"Path algebras of quivers"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
Pythagoras0 (토론 | 기여) |
||
(같은 사용자의 중간 판 2개는 보이지 않습니다) | |||
1번째 줄: | 1번째 줄: | ||
==introduction== | ==introduction== | ||
* Q quiver | * Q quiver | ||
− | * a path in Q is a sequence | + | * a path in Q is a sequence <math>(i|\alpha_1,\alpha_2,\cdots,\alpha_l|j)</math> such that <math>s(\alpha_i)=t(\alpha_{i-1})</math> for all <math>i = 2, \cdots, l</math> |
* the path algebra of kQ of Q is the k-algebra with basis the set of all paths in Q with multiplication in the basis given by concatenation of two paths | * the path algebra of kQ of Q is the k-algebra with basis the set of all paths in Q with multiplication in the basis given by concatenation of two paths | ||
* path algebra of a quiver | * path algebra of a quiver | ||
12번째 줄: | 12번째 줄: | ||
* https://docs.google.com/file/d/0B8XXo8Tve1cxVUgxZU5CUWVwdTA/edit?usp=drivesdk | * https://docs.google.com/file/d/0B8XXo8Tve1cxVUgxZU5CUWVwdTA/edit?usp=drivesdk | ||
[[분류:migrate]] | [[분류:migrate]] | ||
+ | |||
+ | ==메타데이터== | ||
+ | ===위키데이터=== | ||
+ | * ID : [https://www.wikidata.org/wiki/Q493980 Q493980] | ||
+ | ===Spacy 패턴 목록=== | ||
+ | * [{'LEMMA': 'quiver'}] | ||
+ | * [{'LOWER': 'directed'}, {'LEMMA': 'multigraph'}] |
2021년 2월 17일 (수) 01:35 기준 최신판
introduction
- Q quiver
- a path in Q is a sequence \((i|\alpha_1,\alpha_2,\cdots,\alpha_l|j)\) such that \(s(\alpha_i)=t(\alpha_{i-1})\) for all \(i = 2, \cdots, l\)
- the path algebra of kQ of Q is the k-algebra with basis the set of all paths in Q with multiplication in the basis given by concatenation of two paths
- path algebra of a quiver
- given a quiver Q, a path p is a sequence of arrows with some conditions
- path algebra : set of all k-linear combinations of all paths (including e_i's)
- p_1p_2 will correspond to a composition \(p_2\circ p_1\) of two maps (\(U\overset{P_2}{\rightarrow }V\overset{P_1}{\rightarrow }W\))
computational resource
메타데이터
위키데이터
- ID : Q493980
Spacy 패턴 목록
- [{'LEMMA': 'quiver'}]
- [{'LOWER': 'directed'}, {'LEMMA': 'multigraph'}]