"Periods and transcendental number theory"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(사용자 3명의 중간 판 35개는 보이지 않습니다)
1번째 줄: 1번째 줄:
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">introduction</h5>
+
==introduction==
  
 
+
* http://golem.ph.utexas.edu/category/2008/05/ambiguity_theory.html
  
 
+
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">related items</h5>
+
This [http://arxiv.org/abs/0805.2568 paper] – Ambiguity theory, old and new – is rather fun and would be good to understand thoroughly if we hope to get 2-Galois to do anything important. It’s by Yves André of the ENS, and refers to a comment made by Galois that he was working with a <em style="line-height: 2em;">théorie de l’ambiguïté</em>. Good to see Albert [http://golem.ph.utexas.edu/category/2008/04/returning_to_lautman.html Lautman] receiving a mention.
  
 
+
For those who want something less introductory, on the same day André has deposited [http://arxiv.org/abs/0805.2569 Galois theory, motives and transcendental numbers].
  
 
+
Lots there about Kontsevich and Zagier’s[http://en.wikipedia.org/wiki/Period_%28number%29 Periods], described in their article of that name in <em style="line-height: 2em;">Mathematics Unlimited – 2001 and beyond</em>, pages 771-808, unfortunately now no longer available on the Web.
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">books</h5>
+
  
* [[2009년 books and articles|찾아볼 수학책]]
+
* http://gigapedia.info/1/
 
* http://gigapedia.info/1/
 
* http://gigapedia.info/1/
 
* http://gigapedia.info/1/
 
* http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
 
  
 
+
==related items==
  
 
+
* [[K-theory]]
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">encyclopedia</h5>
+
  
 +
==encyclopedia==
 +
 +
* [http://en.wikipedia.org/wiki/Period_%28number%29 http://en.wikipedia.org/wiki/Period_(number)]
 
* http://ko.wikipedia.org/wiki/
 
* http://ko.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
* http://en.wikipedia.org/wiki/
+
* Princeton companion to mathematics(첨부파일로 올릴것)
* Princeton companion to mathematics(첨부파일로 올릴것)<br>
+
[[분류:개인노트]]
 
+
[[분류:math and physics]]
 
+
[[분류:math]]
 
+
[[분류:K-theory]]
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">blogs</h5>
+
[[분류:migrate]]
 
 
* 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q=
 
* 트렌비 블로그 검색 http://www.trenb.com/search.qst?q=
 
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">articles</h5>
 
 
 
*  Zagier-Kontsevich<br>
 
** [[4066213/attachments/2023761|periods.ps]]<br>
 
*   <br>
 
**  M. Waldschmidt. Transcendence of periods: the state of the art. Pure Appl. Math. Q. 2 (2006), 435-463.<br>
 
* [[2010년 books and articles|논문정리]]
 
* http://www.zentralblatt-math.org/zmath/en/
 
* http://pythagoras0.springnote.com/
 
* http://math.berkeley.edu/~reb/papers/index.html
 
 
 
* http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=
 
* http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=
 
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">TeX </h5>
 
 
 
 
 
 
 
http://golem.ph.utexas.edu/category/2008/05/ambiguity_theory.html
 
 
 
 
 
 
 
This [http://arxiv.org/abs/0805.2568 paper] – Ambiguity theory, old and new – is rather fun and would be good to understand thoroughly if we hope to get 2-Galois to do anything important. It’s by Yves André of the ENS, and refers to a comment made by Galois that he was working with a <em style="">théorie de l’ambiguïté</em>. Good to see Albert [http://golem.ph.utexas.edu/category/2008/04/returning_to_lautman.html Lautman] receiving a mention.
 
 
 
For those who want something less introductory, on the same day André has deposited [http://arxiv.org/abs/0805.2569 Galois theory, motives and transcendental numbers]. Lots there about Kontsevich and Zagier’s[http://en.wikipedia.org/wiki/Period_(number) Periods], described in their article of that name in <em style="">Mathematics Unlimited – 2001 and beyond</em>, pages 771-808, unfortunately now no longer available on the Web.
 
 
 
http://en.wikipedia.org/wiki/Period_(number)
 
 
 
 
 
  
<br>
+
==메타데이터==
 +
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q2835973 Q2835973]
 +
===Spacy 패턴 목록===
 +
* [{'LEMMA': 'period'}]

2021년 2월 17일 (수) 01:36 기준 최신판

introduction


This paper – Ambiguity theory, old and new – is rather fun and would be good to understand thoroughly if we hope to get 2-Galois to do anything important. It’s by Yves André of the ENS, and refers to a comment made by Galois that he was working with a théorie de l’ambiguïté. Good to see Albert Lautman receiving a mention.

For those who want something less introductory, on the same day André has deposited Galois theory, motives and transcendental numbers.

Lots there about Kontsevich and Zagier’sPeriods, described in their article of that name in Mathematics Unlimited – 2001 and beyond, pages 771-808, unfortunately now no longer available on the Web.



related items


encyclopedia

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LEMMA': 'period'}]