"Periods and transcendental number theory"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지의 위치를 <a href="/pages/4081441">K-theory</a>페이지로 이동하였습니다.)
 
(사용자 3명의 중간 판 19개는 보이지 않습니다)
1번째 줄: 1번째 줄:
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">introduction</h5>
+
==introduction==
  
http://golem.ph.utexas.edu/category/2008/05/ambiguity_theory.html
+
* http://golem.ph.utexas.edu/category/2008/05/ambiguity_theory.html
  
 
+
  
This [http://arxiv.org/abs/0805.2568 paper] – Ambiguity theory, old and new – is rather fun and would be good to understand thoroughly if we hope to get 2-Galois to do anything important. It’s by Yves André of the ENS, and refers to a comment made by Galois that he was working with <em style="line-height: 2em;">théorie de l’ambiguïté</em>. Good to see Albert [http://golem.ph.utexas.edu/category/2008/04/returning_to_lautman.html Lautman] receiving a mention.
+
This [http://arxiv.org/abs/0805.2568 paper] Ambiguity theory, old and new – is rather fun and would be good to understand thoroughly if we hope to get 2-Galois to do anything important. It’s by Yves André of the ENS, and refers to a comment made by Galois that he was working with a <em style="line-height: 2em;">théorie de l’ambiguïté</em>. Good to see Albert [http://golem.ph.utexas.edu/category/2008/04/returning_to_lautman.html Lautman] receiving a mention.
  
For those who want something less introductory, on the same day André has deposited [http://arxiv.org/abs/0805.2569 Galois theory, motives and transcendental numbers].
+
For those who want something less introductory, on the same day André has deposited [http://arxiv.org/abs/0805.2569 Galois theory, motives and transcendental numbers].
  
Lots there about Kontsevich and Zagier’s[http://en.wikipedia.org/wiki/Period_%28number%29 Periods], described in their article of that name in <em style="line-height: 2em;">Mathematics Unlimited – 2001 and beyond</em>, pages 771-808, unfortunately now no longer available on the Web.
+
Lots there about Kontsevich and Zagier’s[http://en.wikipedia.org/wiki/Period_%28number%29 Periods], described in their article of that name in <em style="line-height: 2em;">Mathematics Unlimited – 2001 and beyond</em>, pages 771-808, unfortunately now no longer available on the Web.
  
 
+
  
 
+
  
<h5 style="margin: 0px; line-height: 2em;">regulator</h5>
+
==related items==
  
* regulator = R^n 을 격자로 자른 compact 공간의 부피로 정의<br>
+
* [[K-theory]]
*  대수적 정수론의 Dirichlet regulator<br>
 
*  Abel-Jacobi map의 일반화<br>
 
*  Chern character map<br>
 
*  arithmetic geometry의 Beilinson regulator / Borel regulator<br>
 
*  motivic cohomology의 Hodge realization / de Rham realization<br>
 
*  chow group 의 cycle class map (singular homology의 fundamental class를 sub manifold 버전으로 보는 것)<br>
 
*  Poincare dual<br>
 
  
 
+
  
 
+
==encyclopedia==
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">related items</h5>
+
* [http://en.wikipedia.org/wiki/Period_%28number%29 http://en.wikipedia.org/wiki/Period_(number)]
 
 
* [[K-theory]]<br>
 
* [[Bloch group, K-theory and dilogarithm|K-theory and dilogarithm]]<br>
 
 
 
 
 
 
 
 
 
 
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">encyclopedia</h5>
 
 
 
* [http://en.wikipedia.org/wiki/Period_%28number%29 ][http://en.wikipedia.org/wiki/Period_%28number%29 http://en.wikipedia.org/wiki/Period_(number)]
 
* http://en.wikipedia.org/wiki/Dirichlet%27s_unit_theorem
 
 
* http://ko.wikipedia.org/wiki/
 
* http://ko.wikipedia.org/wiki/
* http://en.wikipedia.org/wiki/regulator
 
 
* http://en.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
 
* Princeton companion to mathematics(첨부파일로 올릴것)
 
* Princeton companion to mathematics(첨부파일로 올릴것)
 +
[[분류:개인노트]]
 +
[[분류:math and physics]]
 +
[[분류:math]]
 +
[[분류:K-theory]]
 +
[[분류:migrate]]
  
 
+
==메타데이터==
 
+
===위키데이터===
 
+
* ID :  [https://www.wikidata.org/wiki/Q2835973 Q2835973]
 
+
===Spacy 패턴 목록===
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">books</h5>
+
* [{'LEMMA': 'period'}]
 
 
 
 
 
 
* [[2010년 books and articles]]<br>
 
* http://gigapedia.info/1/
 
* http://gigapedia.info/1/
 
* http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
 
 
 
[[4909919|]]
 
 
 
 
 
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">articles</h5>
 
 
 
 
 
 
 
* [[2010년 books and articles|논문정리]]
 
* http://www.ams.org/mathscinet
 
* http://www.zentralblatt-math.org/zmath/en/
 
* http://pythagoras0.springnote.com/
 
* http://math.berkeley.edu/~reb/papers/index.html[http://www.ams.org/mathscinet ]
 
* http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=
 
* http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=
 
* http://dx.doi.org/
 

2021년 2월 17일 (수) 01:36 기준 최신판

introduction


This paper – Ambiguity theory, old and new – is rather fun and would be good to understand thoroughly if we hope to get 2-Galois to do anything important. It’s by Yves André of the ENS, and refers to a comment made by Galois that he was working with a théorie de l’ambiguïté. Good to see Albert Lautman receiving a mention.

For those who want something less introductory, on the same day André has deposited Galois theory, motives and transcendental numbers.

Lots there about Kontsevich and Zagier’sPeriods, described in their article of that name in Mathematics Unlimited – 2001 and beyond, pages 771-808, unfortunately now no longer available on the Web.



related items


encyclopedia

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LEMMA': 'period'}]