"Torus knots"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(사용자 3명의 중간 판 15개는 보이지 않습니다)
1번째 줄: 1번째 줄:
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">introduction</h5>
+
==introduction==
  
*  torus knot : <math>K_{p,q}</math><br>
+
*  torus knot : <math>K_{p,q}</math>
 +
*  The complement of a torus knot in the 3-sphere is a Seifert-fibered manifold
 +
* Seifert fibered space
 +
* S^1-bundle over an orbifold
  
 
+
  
 
+
 +
  
 
+
==related items==
 +
* [[Quantum modular forms]]
 +
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">history</h5>
+
  
* http://www.google.com/search?hl=en&tbs=tl:1&q=
+
==encyclopedia==
 
 
 
 
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">related items</h5>
 
 
 
 
 
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">encyclopedia</h5>
 
  
 
* http://en.wikipedia.org/wiki/Torus_knot
 
* http://en.wikipedia.org/wiki/Torus_knot
* http://www.scholarpedia.org/
 
* http://www.proofwiki.org/wiki/
 
* Princeton companion to mathematics([[2910610/attachments/2250873|Companion_to_Mathematics.pdf]])
 
 
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">books</h5>
 
 
 
 
 
* [[2010년 books and articles]]<br>
 
* http://gigapedia.info/1/
 
* http://gigapedia.info/1/
 
* http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
 
 
[[4909919|]]
 
 
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles</h5>
 
 
* [http://dx.doi.org/10.1023/A:1022608131142 Proof of the volume conjecture for torus knots]<br>
 
** R. M. Kashaev and O. Tirkkonen, 2003
 
 
* [http://dx.doi.org/10.1016/j.physletb.2003.09.007 Torus knot and minimal model]<br>
 
**  Kazuhiro Hikami, a and Anatol N. Kirillov, 2003<br>
 
 
* http://www.ams.org/mathscinet
 
* [http://www.zentralblatt-math.org/zmath/en/ ]http://www.zentralblatt-math.org/zmath/en/
 
* http://arxiv.org/
 
* http://www.pdf-search.org/
 
* http://pythagoras0.springnote.com/
 
* [http://math.berkeley.edu/%7Ereb/papers/index.html http://math.berkeley.edu/~reb/papers/index.html]
 
* http://dx.doi.org/
 
 
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">question and answers(Math Overflow)</h5>
 
 
* http://mathoverflow.net/search?q=
 
* http://mathoverflow.net/search?q=
 
 
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">blogs</h5>
 
 
*  구글 블로그 검색<br>
 
** http://blogsearch.google.com/blogsearch?q=
 
** http://blogsearch.google.com/blogsearch?q=
 
* http://ncatlab.org/nlab/show/HomePage
 
 
 
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">experts on the field</h5>
+
  
* http://arxiv.org/
+
 +
  
 
+
==articles==
 +
* Kathrin Bringmann, Jeremy Lovejoy, Larry Rolen, On some special families of <math>q</math>-hypergeometric Maass forms, http://arxiv.org/abs/1603.01783v1
 +
* Hikami, Kazuhiro, and Jeremy Lovejoy. “Torus Knots and Quantum Modular Forms.” arXiv:1409.6243 [math], September 22, 2014. http://arxiv.org/abs/1409.6243.
 +
* [http://dx.doi.org/10.1023/A:1022608131142 Proof of the volume conjecture for torus knots]
 +
** R. M. Kashaev and O. Tirkkonen, 2003
 +
* [http://dx.doi.org/10.1016/j.physletb.2003.09.007 Torus knot and minimal model]
 +
**  Kazuhiro Hikami, a and Anatol N. Kirillov, 2003
  
 
+
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">links</h5>
+
[[분류:개인노트]]
 +
[[분류:math and physics]]
 +
[[분류:Knot theory]]
 +
[[분류:migrate]]
  
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]
+
==메타데이터==
* [http://pythagoras0.springnote.com/pages/1947378 수식표현 안내]
+
===위키데이터===
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
+
* ID :  [https://www.wikidata.org/wiki/Q1892897 Q1892897]
* http://functions.wolfram.com/
+
===Spacy 패턴 목록===
*
+
* [{'LOWER': 'torus'}, {'LEMMA': 'knot'}]

2021년 2월 17일 (수) 01:38 기준 최신판

introduction

  • torus knot \[K_{p,q}\]
  • The complement of a torus knot in the 3-sphere is a Seifert-fibered manifold
  • Seifert fibered space
  • S^1-bundle over an orbifold




related items



encyclopedia




articles

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'torus'}, {'LEMMA': 'knot'}]