"Torus knots"의 두 판 사이의 차이
		
		
		
		
		
		둘러보기로 가기
		검색하러 가기
		
				
		
		
	
Pythagoras0 (토론 | 기여)  | 
				Pythagoras0 (토론 | 기여)   | 
				||
| (같은 사용자의 중간 판 2개는 보이지 않습니다) | |||
| 1번째 줄: | 1번째 줄: | ||
==introduction==  | ==introduction==  | ||
| − | *  torus knot : <math>K_{p,q}</math  | + | *  torus knot : <math>K_{p,q}</math>  | 
| − | *  The complement of a torus knot in the 3-sphere is a Seifert-fibered manifold  | + | *  The complement of a torus knot in the 3-sphere is a Seifert-fibered manifold  | 
* Seifert fibered space  | * Seifert fibered space  | ||
* S^1-bundle over an orbifold  | * S^1-bundle over an orbifold  | ||
| 27번째 줄: | 27번째 줄: | ||
==articles==  | ==articles==  | ||
| − | * Kathrin Bringmann, Jeremy Lovejoy, Larry Rolen, On some special families of   | + | * Kathrin Bringmann, Jeremy Lovejoy, Larry Rolen, On some special families of <math>q</math>-hypergeometric Maass forms, http://arxiv.org/abs/1603.01783v1  | 
* Hikami, Kazuhiro, and Jeremy Lovejoy. “Torus Knots and Quantum Modular Forms.” arXiv:1409.6243 [math], September 22, 2014. http://arxiv.org/abs/1409.6243.  | * Hikami, Kazuhiro, and Jeremy Lovejoy. “Torus Knots and Quantum Modular Forms.” arXiv:1409.6243 [math], September 22, 2014. http://arxiv.org/abs/1409.6243.  | ||
* [http://dx.doi.org/10.1023/A:1022608131142 Proof of the volume conjecture for torus knots]  | * [http://dx.doi.org/10.1023/A:1022608131142 Proof of the volume conjecture for torus knots]  | ||
| 40번째 줄: | 40번째 줄: | ||
[[분류:Knot theory]]  | [[분류:Knot theory]]  | ||
[[분류:migrate]]  | [[분류:migrate]]  | ||
| + | |||
| + | ==메타데이터==  | ||
| + | ===위키데이터===  | ||
| + | * ID :  [https://www.wikidata.org/wiki/Q1892897 Q1892897]  | ||
| + | ===Spacy 패턴 목록===  | ||
| + | * [{'LOWER': 'torus'}, {'LEMMA': 'knot'}]  | ||
2021년 2월 17일 (수) 01:38 기준 최신판
introduction
- torus knot \[K_{p,q}\]
 - The complement of a torus knot in the 3-sphere is a Seifert-fibered manifold
 - Seifert fibered space
 - S^1-bundle over an orbifold
 
 
 
encyclopedia
 
 
articles
- Kathrin Bringmann, Jeremy Lovejoy, Larry Rolen, On some special families of \(q\)-hypergeometric Maass forms, http://arxiv.org/abs/1603.01783v1
 - Hikami, Kazuhiro, and Jeremy Lovejoy. “Torus Knots and Quantum Modular Forms.” arXiv:1409.6243 [math], September 22, 2014. http://arxiv.org/abs/1409.6243.
 - Proof of the volume conjecture for torus knots
- R. M. Kashaev and O. Tirkkonen, 2003
 
 - Torus knot and minimal model
- Kazuhiro Hikami, a and Anatol N. Kirillov, 2003
 
 
메타데이터
위키데이터
- ID : Q1892897
 
Spacy 패턴 목록
- [{'LOWER': 'torus'}, {'LEMMA': 'knot'}]