"Bruhat decomposition"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) |
|||
(사용자 3명의 중간 판 52개는 보이지 않습니다) | |||
1번째 줄: | 1번째 줄: | ||
− | < | + | ==introduction== |
+ | * Given a Lie group <math>G</math> over <math>\mathbb{C}</math> and a Borel subgroup <math>B</math>, there is famous Bruhat decomposition of the flag variety <math>G/B</math> | ||
+ | * <math>G</math> : connected reductive algebraic group over an algebraically closed field | ||
+ | * By allowing one to reduce many questions about <math>G</math> to questions about the Weyl group <math>W</math>, Bruhat decomposition is indispensable for the understanding of both the structure and representations of <math>G</math> | ||
+ | * The order of a Chevalley group over a finite field was computed in '''[C1]''' (using Bruhat decomposition) in terms of the exponents of the Weyl group | ||
+ | * Bruhat order | ||
+ | * Weyl group action | ||
− | |||
− | |||
− | + | ==example : general linear group== | |
+ | * <math>G=GL_{n}</math> | ||
+ | * <math>B</math> : upper triangular matrices in <math>G</math> | ||
+ | * <math>B_{-}</math> : lower triangular matrices in <math>G</math> | ||
+ | * <math>W=S_{n}</math> we can think of it as a subgroup of <math>G</math> | ||
+ | * Double cosets <math>BwB</math> and <math>B_{-}wB_{-}</math> are called Bruhat cells. | ||
− | |||
− | The | + | ==(B, N) pair== |
+ | * A <math>(B, N)</math> pair is a pair of subgroups <math>B</math> and <math>N</math> of a group <math>G</math> such that the following axioms hold: | ||
+ | # <math>G</math> is generated by <math>B</math> and <math>N</math> | ||
+ | # The intersection, <math>T</math>, of <math>B</math> and <math>N</math> is a normal subgroup of N | ||
+ | # The group <math>W = N/T</math> is generated by a set <math>S</math> of elements <math>w_i</math> of order 2, for <math>i</math> in some non-empty set <math>I</math> | ||
+ | # If <math>w_i</math> is an element of <math>S</math> and <math>w</math> is any element of <math>W</math>, then <math>w_iBw</math> is contained in the union of <math>Bw_iwB</math> and <math>BwB</math> | ||
+ | # No generator <math>w_i</math> normalizes <math>B</math> | ||
+ | * we say <math>(B,N)</math> form a <math>BN</math>-pair of <math>G</math>, or that <math>(G,B,N,S)</math> is a Tits system | ||
+ | * we call <math>B</math> the Borel subgroup of <math>G</math>, and <math>W=N/B\cap N</math> the Weyl group associated with the Tits system | ||
+ | * the rank of the Tits system is defined to be <math>|S|</math> | ||
+ | ===why do we care?=== | ||
+ | * <math>(B, N)</math> pair is a structure on groups of Lie type that allows one to give uniform proofs of many results, instead of giving a large number of case-by-case proofs. | ||
+ | * Roughly speaking, it shows that all such groups are similar to the general linear group over a field | ||
+ | * BN-pairs can be used to prove that most groups of Lie type are simple | ||
− | |||
− | + | ==Bruhat decomposition theorem== | |
+ | ;thm | ||
+ | Let <math>G</math> be a group with a <math>BN</math>-pair. Then | ||
+ | :<math> | ||
+ | G=BWB | ||
+ | </math> | ||
+ | or, | ||
+ | :<math> | ||
+ | G=\cup_{w\in W}BwB | ||
+ | </math> | ||
+ | in which the union is disjoint, where <math>BwB</math> is taken to mean <math>B\dot{w}B</math> for any <math>\dot{w}\in N</math> with <math>\dot{w}T=w</math> | ||
− | |||
− | |||
− | * http:// | + | ==memo== |
+ | * http://qchu.wordpress.com/2010/07/11/chevalley-bruhat-order/ | ||
− | |||
− | + | ==related items== | |
+ | * [[Cartan decomposition of general linear groups]] | ||
− | + | ==computational resource== | |
+ | * https://docs.google.com/file/d/0B8XXo8Tve1cxZzFwSzhRYnRHalE/edit | ||
+ | |||
− | |||
− | |||
− | + | ==encyclopedia== | |
+ | * http://en.wikipedia.org/wiki/(B,_N)_pair | ||
+ | * http://en.wikipedia.org/wiki/Longest_element_of_a_Coxeter_group | ||
+ | * http://eom.springer.de/b/b017690.htm | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | ==expositions== | |
− | + | * Lusztig, G. 2010. “Bruhat Decomposition and Applications.” arXiv:1006.5004 [math] (June 25). http://arxiv.org/abs/1006.5004. | |
− | |||
− | |||
− | |||
− | |||
− | * | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
* http://math.ucr.edu/home/baez/week186.html | * http://math.ucr.edu/home/baez/week186.html | ||
+ | * [http://www.ryancreich.info/bruhat_row-reduction.pdf Bruhat decomposition via row reduction] | ||
− | + | ||
− | + | ==articles== | |
− | + | * '''[C1]''' Chevalley, C. 1955. “Sur Certains Groupes Simples.” The Tohoku Mathematical Journal. Second Series 7: 14–66. | |
− | + | * Bruhat, Fran\ccois. 1956. “Sur Les Représentations Induites Des Groupes de Lie.” Bulletin de La Société Mathématique de France 84: 97–205. | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | * | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
+ | ==question and answers(Math Overflow)== | ||
* http://mathoverflow.net/questions/15438/a-slick-proof-of-the-bruhat-decomposition-for-gl-nk | * http://mathoverflow.net/questions/15438/a-slick-proof-of-the-bruhat-decomposition-for-gl-nk | ||
− | * http://mathoverflow.net/ | + | * http://mathoverflow.net/questions/28569/is-there-a-morse-theory-proof-of-the-bruhat-decomposition |
− | * http://mathoverflow.net/ | + | * http://mathoverflow.net/questions/168033/coxeter-groups-parabolic-subgroups/168035#168035 |
− | + | * http://mathoverflow.net/questions/188920/closure-relations-between-bruhat-cells-on-the-flag-variety/190961#190961 | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | [[분류:개인노트]] | |
+ | [[분류:cluster algebra]] | ||
+ | [[분류:math and physics]] | ||
+ | [[분류:math]] | ||
+ | [[분류:migrate]] | ||
− | * [ | + | ==메타데이터== |
− | * [ | + | ===위키데이터=== |
− | + | * ID : [https://www.wikidata.org/wiki/Q4978699 Q4978699] | |
− | + | ===Spacy 패턴 목록=== | |
+ | * [{'LOWER': 'bruhat'}, {'LEMMA': 'decomposition'}] |
2021년 2월 17일 (수) 01:38 기준 최신판
introduction
- Given a Lie group \(G\) over \(\mathbb{C}\) and a Borel subgroup \(B\), there is famous Bruhat decomposition of the flag variety \(G/B\)
- \(G\) : connected reductive algebraic group over an algebraically closed field
- By allowing one to reduce many questions about \(G\) to questions about the Weyl group \(W\), Bruhat decomposition is indispensable for the understanding of both the structure and representations of \(G\)
- The order of a Chevalley group over a finite field was computed in [C1] (using Bruhat decomposition) in terms of the exponents of the Weyl group
- Bruhat order
- Weyl group action
example : general linear group
- \(G=GL_{n}\)
- \(B\) : upper triangular matrices in \(G\)
- \(B_{-}\) : lower triangular matrices in \(G\)
- \(W=S_{n}\) we can think of it as a subgroup of \(G\)
- Double cosets \(BwB\) and \(B_{-}wB_{-}\) are called Bruhat cells.
(B, N) pair
- A \((B, N)\) pair is a pair of subgroups \(B\) and \(N\) of a group \(G\) such that the following axioms hold:
- \(G\) is generated by \(B\) and \(N\)
- The intersection, \(T\), of \(B\) and \(N\) is a normal subgroup of N
- The group \(W = N/T\) is generated by a set \(S\) of elements \(w_i\) of order 2, for \(i\) in some non-empty set \(I\)
- If \(w_i\) is an element of \(S\) and \(w\) is any element of \(W\), then \(w_iBw\) is contained in the union of \(Bw_iwB\) and \(BwB\)
- No generator \(w_i\) normalizes \(B\)
- we say \((B,N)\) form a \(BN\)-pair of \(G\), or that \((G,B,N,S)\) is a Tits system
- we call \(B\) the Borel subgroup of \(G\), and \(W=N/B\cap N\) the Weyl group associated with the Tits system
- the rank of the Tits system is defined to be \(|S|\)
why do we care?
- \((B, N)\) pair is a structure on groups of Lie type that allows one to give uniform proofs of many results, instead of giving a large number of case-by-case proofs.
- Roughly speaking, it shows that all such groups are similar to the general linear group over a field
- BN-pairs can be used to prove that most groups of Lie type are simple
Bruhat decomposition theorem
- thm
Let \(G\) be a group with a \(BN\)-pair. Then \[ G=BWB \] or, \[ G=\cup_{w\in W}BwB \] in which the union is disjoint, where \(BwB\) is taken to mean \(B\dot{w}B\) for any \(\dot{w}\in N\) with \(\dot{w}T=w\)
memo
computational resource
encyclopedia
- http://en.wikipedia.org/wiki/(B,_N)_pair
- http://en.wikipedia.org/wiki/Longest_element_of_a_Coxeter_group
- http://eom.springer.de/b/b017690.htm
expositions
- Lusztig, G. 2010. “Bruhat Decomposition and Applications.” arXiv:1006.5004 [math] (June 25). http://arxiv.org/abs/1006.5004.
- http://math.ucr.edu/home/baez/week186.html
- Bruhat decomposition via row reduction
articles
- [C1] Chevalley, C. 1955. “Sur Certains Groupes Simples.” The Tohoku Mathematical Journal. Second Series 7: 14–66.
- Bruhat, Fran\ccois. 1956. “Sur Les Représentations Induites Des Groupes de Lie.” Bulletin de La Société Mathématique de France 84: 97–205.
question and answers(Math Overflow)
- http://mathoverflow.net/questions/15438/a-slick-proof-of-the-bruhat-decomposition-for-gl-nk
- http://mathoverflow.net/questions/28569/is-there-a-morse-theory-proof-of-the-bruhat-decomposition
- http://mathoverflow.net/questions/168033/coxeter-groups-parabolic-subgroups/168035#168035
- http://mathoverflow.net/questions/188920/closure-relations-between-bruhat-cells-on-the-flag-variety/190961#190961
메타데이터
위키데이터
- ID : Q4978699
Spacy 패턴 목록
- [{'LOWER': 'bruhat'}, {'LEMMA': 'decomposition'}]