"Solitons"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(사용자 3명의 중간 판 23개는 보이지 않습니다)
1번째 줄: 1번째 줄:
<h5>introduction</h5>
+
==introduction==
  
 
* Solitons were discovered experimentally (Russell 1844)
 
* Solitons were discovered experimentally (Russell 1844)
*  analytically (Korteweg & de Vries, 1895)<br>
+
*  analytically (Korteweg & de Vries, 1895)
 
** modelling of Russell's discovery
 
** modelling of Russell's discovery
*  numerically (Zabusky & Kruskal 1965).<br>
+
** 1-soliton solution
 +
*  numerically (Zabusky & Kruskal 1965).
 +
** interaction of two 1-soliton solutions
 
** they discovered that solitons of differenct sizes interact cleanly
 
** they discovered that solitons of differenct sizes interact cleanly
** interaction of two 1-soliton solutions
 
  
 
+
  
 
+
  
<h5>meaning of soliton</h5>
+
==meaning of soliton==
  
* "soliton" is used to describe their particle-like properties like bosons, fermions and hadrons
+
* "soliton" is used to describe their particle-like properties like bosons, fermions and hadrons
 
* any localized nonlinear wave which interacts with another (arbitrary) local disturbance and always regains asymptotically its exact initial shape and velocity (allowing for a possible phase shift)
 
* any localized nonlinear wave which interacts with another (arbitrary) local disturbance and always regains asymptotically its exact initial shape and velocity (allowing for a possible phase shift)
  
 
+
  
 
+
  
<h5>PDEs</h5>
+
==PDEs==
  
 
* [[KdV equation]]
 
* [[KdV equation]]
27번째 줄: 28번째 줄:
 
* [[Nonlinear Schrodinger equation|Non-linear Schrodinger equation]]
 
* [[Nonlinear Schrodinger equation|Non-linear Schrodinger equation]]
  
 
+
  
 
+
  
<h5>important techniques</h5>
+
==important techniques==
  
 
* [[Lax pair formulation]]
 
* [[Lax pair formulation]]
 
* [[inverse scattering method]]
 
* [[inverse scattering method]]
  
 
+
  
 
+
  
<h5>mathematica code</h5>
+
==history==
  
* [[KdV equation]]<br>
+
* http://www.google.com/search?hl=en&tbs=tl:1&q=soliton
** [[5398019/attachments/3290823|soliton.nb]]
 
* [[sine-Gordon equation]]<br>
 
** [[5398019/attachments/3290825|sinegordon.nb]]
 
* [http://physics.ucsc.edu/%7Epeter/250/mathematica/ http://physics.ucsc.edu/~peter/250/mathematica/]
 
  
 
+
  
<h5>history</h5>
+
  
* http://www.google.com/search?hl=en&tbs=tl:1&q=soliton
+
  
 
+
==하위페이지==
 +
* [[solitons]]
 +
* [[Boussinesq equation]]
 +
* [[course design on soliton]]
 +
* [[Fermi-Pasta-Ulam problem]]
 +
* [[Frenkel-Kontorova dislocation]]
 +
* [[Hamiltonian structure in soliton theory|Hamiltonian structure]]
 +
* [[Kadometsev-Petviashvii equation (KP equation)]]
 +
* [[KdV equation]]
 +
* [[0 methods and theory|methods and theory]]
 +
* [[algebro-geometric method in soliton theory]]
 +
* [[Bäcklund transformation (backlund)]]
 +
* [[Tau functions and Bethe ansatz|Bethe ansatz and Tau functions]]
 +
* [[hierarchy of soliton equations]]
 +
* [[Hirota bilinear method]]
 +
* [[inverse scattering method]]
 +
* [[quantization of solitons and quantum inverse scattering method (QISM)]]
 +
* [[Sato theory]]
 +
* [[tau functions]]
 +
* [[Nonlinear Schrodinger equation]]
 +
* [[quantum sine-Gordon field theory]]
 +
* [[restricted sine-Gordon theory]]
 +
* [[sine-Gordon equation]]
 +
* [[Topological solitons]]
  
 
+
  
 
+
==related items==
  
==== 하위페이지 ====
+
* [[inverse scattering method]]
 +
* [[5720447|wave phenomema]]
  
* [[solitons|soliton]]<br>
+
** [[Bäcklund transformation (backlund)|Bäcklund transformation]]<br>
 
** [[Frenkel-Kontorova dislocation]]<br>
 
** [[Hirota bilinear method|Hirota hierarchy]]<br>
 
** [[inverse scattering method]]<br>
 
** [[KdV equation]]<br>
 
** [[Kadometsev-Petviashvii equation (KP equation)|KP hierarchy]]<br>
 
** [[Nonlinear Schrodinger equation]]<br>
 
** [[quantum sine-Gordon field theory]]<br>
 
** [[restricted sine-Gordon theory]]<br>
 
** [[sine-Gordon equation]]<br>
 
  
 
+
  
 
+
==computational resource==
  
<h5>related items</h5>
+
* [[KdV equation]]
 +
* [[sine-Gordon equation]][[5398019/attachments/3290825|5398019/attachments/3290825]]
 +
* [http://physics.ucsc.edu/%7Epeter/250/mathematica/ ][http://physics.ucsc.edu/%7Epeter/250/mathematica/ http://physics.ucsc.edu/~peter/250/mathematica/]
 +
** [[5398019/attachments/3290823|soliton.nb]]
 +
** [[5398019/attachments/3290825|sinegordon.nb]]
  
* [[inverse scattering method]]
+
* [[5720447|wave phenomema]]
 
 
 
 
 
  
 
+
  
<h5>books</h5>
+
==books==
  
* [http://gigapedia.com/items/428472/integrable-models--world-scientific-lecture-notes-in-physics- Integrable Models (World Scientific Lecture Notes in Physics)]<br>
+
* [http://gigapedia.com/items/428472/integrable-models--world-scientific-lecture-notes-in-physics- Integrable Models (World Scientific Lecture Notes in Physics)]Ashok Das
** Ashok Das
+
* Soliton, Toda
* Soliton <br>
+
* Theory of Nonlinear Lattices, Morikazu Toda
** Toda
+
* Nonlinear evolution equations solvable by the spectral transform, Eds. Calogero, 1977
* Theory of Nonlinear Lattices<br>
+
* Solitons and Nonlinear Wave Equations, R.K.Dodd, J.C.Eilbeck, J.D.Gibbon, H.C.Morries, Academic Press, London, 1982
** Morikazu Toda
 
* Nonlinear evolution equations solvable by the spectral transform<br>
 
** Eds. Calogero, 1977
 
* Solitons and Nonlinear Wave Equations<br>
 
** R.K.Dodd, J.C.Eilbeck, J.D.Gibbon, H.C.Morries, Academic Press, London, 1982
 
 
* [[2010년 books and articles]]
 
* [[2010년 books and articles]]
* http://gigapedia.info/1/soliton
 
* http://gigapedia.info/1/
 
* http://gigapedia.info/1/
 
* http://gigapedia.info/1/
 
* http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
 
  
 
+
  
 
+
==encyclopedia==
 
 
<h5>encyclopedia</h5>
 
  
 
* http://ko.wikipedia.org/wiki/
 
* http://ko.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/Soliton
 
* http://en.wikipedia.org/wiki/Soliton
* http://en.wikipedia.org/wiki/
+
* http://en.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
 
* Princeton companion to mathematics([[2910610/attachments/2250873|Companion_to_Mathematics.pdf]])
 
  
 
+
  
 
+
==expositions==
 +
* Sascha Vongehr [http://physics1.usc.edu/~vongehr/solitons_html/solitons.html Solitons in field theory], 1997
 +
* [http://arxiv.org/abs/0802.2408 Why are solitons stable?] Terence Tao, 2008[http://xxx.lanl.gov/abs/q-alg/9712005 ]
 +
* [http://www.ma.utexas.edu/users/uhlen/solitons/notes.pdf An Introduction to Wave Equations and Solitons] Richard S. Palais
 +
* Richard S Palais, “The Symmetries of Solitons,” dg-ga/9708004 (August 8, 1997), http://arxiv.org/abs/dg-ga/9708004.  [http://dx.doi.org/10.1090/S0273-0979-97-00732-5 ]http://dx.doi.org/10.1090/S0273-0979-97-00732-5
 +
* Ford, Joseph. 1992. The Fermi-Pasta-Ulam problem: Paradox turns discovery. Physics Reports 213, no. 5 (May): 271-310. doi:[http://dx.doi.org/10.1016/0370-1573%2892%2990116-H 10.1016/0370-1573(92)90116-H]. [http://dx.doi.org/10.1216/RMJ-1978-8-1-413 ]
 +
  
 
+
  
<h5>expositions</h5>
+
==articles==
 
 
* [http://arxiv.org/abs/0802.2408 Why are solitons stable?]<br>
 
** Terence Tao, 2008
 
* [http://xxx.lanl.gov/abs/q-alg/9712005 Five Lectures on Soliton Equations]<br>
 
** Edward Frenkel, Submitted on 30 Nov 1997
 
* Richard S Palais, “The Symmetries of Solitons,” dg-ga/9708004 (August 8, 1997), http://arxiv.org/abs/dg-ga/9708004.  http://dx.doi.org/10.1090/S0273-0979-97-00732-5
 
* [http://dx.doi.org/10.1216/RMJ-1978-8-1-413 A brief history of the quantum soliton with new results on the quantization of the Toda lattice]<br>
 
** Bill Sutherland, Rocky Mountain J. Math. Volume 8, Number 1-2 (1978), 413-430.
 
 
 
 
 
 
 
 
 
 
 
<h5>articles</h5>
 
 
 
* [http://dx.doi.org/10.1098/rspa.1999.0502%20 Solitons, Links and Knots]<br>
 
** Richard Battye, Paul Sutcliffe, Proc. R. Soc. Lond. A 8 December 1999 vol. 455 no. 1992 4305-4331
 
* [http://www.ams.org/journals/bull/1997-34-04/S0273-0979-97-00732-5/home.html The Symmetries of Solitons]<br>
 
** Richard S. Palais, Journal: Bull. Amer. Math. Soc. 34 (1997), 339-403
 
* [http://dx.doi.org/10.1143/PTPS.94.1%20 From Solitons to Knots and Links]<br>
 
** Miki Wadati and Yasuhiro Akutsu, Prog. Theor. Phys. Supplement No.94 (1988) pp. 1-41
 
* Lax, P. D. 1996. Outline of a Theory of the KdV Equation in Recent Mathematical Methods in Nonlinear Wave Propagation. Lecture Notes in Mathematics, volume 1640, pp. 70–102. New York: Springer.
 
  
 +
* [http://dx.doi.org/10.1098/rspa.1999.0502%20 Solitons, Links and Knots]Richard Battye, Paul Sutcliffe, Proc. R. Soc. Lond. A 8 December 1999 vol. 455 no. 1992 4305-4331
 +
* [http://www.ams.org/journals/bull/1997-34-04/S0273-0979-97-00732-5/home.html The Symmetries of Solitons]Richard S. Palais, Journal: Bull. Amer. Math. Soc. 34 (1997), 339-403
 +
* [http://dx.doi.org/10.1143/PTPS.94.1%20 From Solitons to Knots and Links] Miki Wadati and Yasuhiro Akutsu, Prog. Theor. Phys. Supplement No.94 (1988) pp. 1-41
 +
* Lax, P. D. 1996. Outline of a Theory of the KdV Equation in Recent Mathematical Methods in Nonlinear Wave Propagation. Lecture Notes in Mathematics, volume 1640, pp. 70–102. New York: Springer.
 
* Russell, J. S. 1844. Report on waves. In Report of the 14th Meeting of the British Association for the Advancement of Science, pp. 311–90. London: John Murray.
 
* Russell, J. S. 1844. Report on waves. In Report of the 14th Meeting of the British Association for the Advancement of Science, pp. 311–90. London: John Murray.
 
 
* Toda, M. 1989. Nonlinear Waves and Solitons. Dordrecht: Kluwer.
 
* Toda, M. 1989. Nonlinear Waves and Solitons. Dordrecht: Kluwer.
 
 
* Zabusky, N. J., and M. D. Kruskal. 1965. Interaction of solitons in a collisionless plasma and the recurrence of initial states. Physics Review Letters 15:240–43.
 
* Zabusky, N. J., and M. D. Kruskal. 1965. Interaction of solitons in a collisionless plasma and the recurrence of initial states. Physics Review Letters 15:240–43.
 
 
* [http://dx.doi.org/10.1216/RMJ-1978-8-1-413 http://dx.doi.org/10.1090/S0273-0979-97-00732-5]
 
* [http://dx.doi.org/10.1216/RMJ-1978-8-1-413 http://dx.doi.org/10.1090/S0273-0979-97-00732-5]
  
 
+
  
 
+
  
<h5>question and answers(Math Overflow)</h5>
+
==question and answers(Math Overflow)==
  
 
* http://mathoverflow.net/search?q=
 
* http://mathoverflow.net/search?q=
 
* http://mathoverflow.net/search?q=
 
* http://mathoverflow.net/search?q=
  
 
+
   
 
 
 
 
 
 
<h5>blogs</h5>
 
 
 
* 구글 블로그 검색<br>
 
** http://blogsearch.google.com/blogsearch?q=
 
** http://blogsearch.google.com/blogsearch?q=
 
 
 
 
 
 
 
 
 
 
 
<h5>experts on the field</h5>
 
 
 
* http://arxiv.org/
 
 
 
 
 
 
 
 
 
  
<h5>links</h5>
+
[[분류:개인노트]]
 +
[[분류:integrable systems]]
 +
[[분류:math and physics]]
 +
[[분류:migrate]]
  
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]
+
==메타데이터==
* [http://pythagoras0.springnote.com/pages/1947378 수식표 현 안내]
+
===위키데이터===
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
+
* ID :  [https://www.wikidata.org/wiki/Q464949 Q464949]
* http://functions.wolfram.com/
+
===Spacy 패턴 목록===
 +
* [{'LEMMA': 'soliton'}]
 +
* [{'LOWER': 'soliton'}, {'LEMMA': 'wave'}]

2021년 2월 17일 (수) 01:39 기준 최신판

introduction

  • Solitons were discovered experimentally (Russell 1844)
  • analytically (Korteweg & de Vries, 1895)
    • modelling of Russell's discovery
    • 1-soliton solution
  • numerically (Zabusky & Kruskal 1965).
    • interaction of two 1-soliton solutions
    • they discovered that solitons of differenct sizes interact cleanly



meaning of soliton

  • "soliton" is used to describe their particle-like properties like bosons, fermions and hadrons
  • any localized nonlinear wave which interacts with another (arbitrary) local disturbance and always regains asymptotically its exact initial shape and velocity (allowing for a possible phase shift)



PDEs



important techniques



history




하위페이지


related items



computational resource



books


encyclopedia



expositions



articles

  • Solitons, Links and KnotsRichard Battye, Paul Sutcliffe, Proc. R. Soc. Lond. A 8 December 1999 vol. 455 no. 1992 4305-4331
  • The Symmetries of SolitonsRichard S. Palais, Journal: Bull. Amer. Math. Soc. 34 (1997), 339-403
  • From Solitons to Knots and Links Miki Wadati and Yasuhiro Akutsu, Prog. Theor. Phys. Supplement No.94 (1988) pp. 1-41
  • Lax, P. D. 1996. Outline of a Theory of the KdV Equation in Recent Mathematical Methods in Nonlinear Wave Propagation. Lecture Notes in Mathematics, volume 1640, pp. 70–102. New York: Springer.
  • Russell, J. S. 1844. Report on waves. In Report of the 14th Meeting of the British Association for the Advancement of Science, pp. 311–90. London: John Murray.
  • Toda, M. 1989. Nonlinear Waves and Solitons. Dordrecht: Kluwer.
  • Zabusky, N. J., and M. D. Kruskal. 1965. Interaction of solitons in a collisionless plasma and the recurrence of initial states. Physics Review Letters 15:240–43.
  • http://dx.doi.org/10.1090/S0273-0979-97-00732-5



question and answers(Math Overflow)

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LEMMA': 'soliton'}]
  • [{'LOWER': 'soliton'}, {'LEMMA': 'wave'}]