"Solitons"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(같은 사용자의 중간 판 2개는 보이지 않습니다)
9번째 줄: 9번째 줄:
 
** they discovered that solitons of differenct sizes interact cleanly
 
** they discovered that solitons of differenct sizes interact cleanly
  
 
+
  
 
+
  
 
==meaning of soliton==
 
==meaning of soliton==
  
* "soliton" is used to describe their particle-like properties like bosons, fermions and hadrons
+
* "soliton" is used to describe their particle-like properties like bosons, fermions and hadrons
 
* any localized nonlinear wave which interacts with another (arbitrary) local disturbance and always regains asymptotically its exact initial shape and velocity (allowing for a possible phase shift)
 
* any localized nonlinear wave which interacts with another (arbitrary) local disturbance and always regains asymptotically its exact initial shape and velocity (allowing for a possible phase shift)
  
 
+
  
 
+
  
 
==PDEs==
 
==PDEs==
28번째 줄: 28번째 줄:
 
* [[Nonlinear Schrodinger equation|Non-linear Schrodinger equation]]
 
* [[Nonlinear Schrodinger equation|Non-linear Schrodinger equation]]
  
 
+
  
 
+
  
 
==important techniques==
 
==important techniques==
37번째 줄: 37번째 줄:
 
* [[inverse scattering method]]
 
* [[inverse scattering method]]
  
 
+
  
 
+
  
 
==history==
 
==history==
45번째 줄: 45번째 줄:
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=soliton
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=soliton
  
 
+
  
 
+
  
 
+
  
 
==하위페이지==
 
==하위페이지==
76번째 줄: 76번째 줄:
 
* [[Topological solitons]]
 
* [[Topological solitons]]
  
 
+
  
 
==related items==
 
==related items==
83번째 줄: 83번째 줄:
 
* [[5720447|wave phenomema]]
 
* [[5720447|wave phenomema]]
  
 
+
  
 
+
  
 
==computational resource==
 
==computational resource==
95번째 줄: 95번째 줄:
 
** [[5398019/attachments/3290825|sinegordon.nb]]
 
** [[5398019/attachments/3290825|sinegordon.nb]]
  
 
+
  
 
+
  
 
==books==
 
==books==
104번째 줄: 104번째 줄:
 
* Soliton, Toda
 
* Soliton, Toda
 
* Theory of Nonlinear Lattices, Morikazu Toda
 
* Theory of Nonlinear Lattices, Morikazu Toda
* Nonlinear evolution equations solvable by the spectral transform, Eds. Calogero, 1977
+
* Nonlinear evolution equations solvable by the spectral transform, Eds. Calogero, 1977
* Solitons and Nonlinear Wave Equations, R.K.Dodd, J.C.Eilbeck, J.D.Gibbon, H.C.Morries, Academic Press, London, 1982
+
* Solitons and Nonlinear Wave Equations, R.K.Dodd, J.C.Eilbeck, J.D.Gibbon, H.C.Morries, Academic Press, London, 1982
 
* [[2010년 books and articles]]
 
* [[2010년 books and articles]]
  
 
+
  
 
==encyclopedia==
 
==encyclopedia==
114번째 줄: 114번째 줄:
 
* http://ko.wikipedia.org/wiki/
 
* http://ko.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/Soliton
 
* http://en.wikipedia.org/wiki/Soliton
 
+
  
 
+
  
 
==expositions==
 
==expositions==
122번째 줄: 122번째 줄:
 
* [http://arxiv.org/abs/0802.2408 Why are solitons stable?] Terence Tao, 2008[http://xxx.lanl.gov/abs/q-alg/9712005 ]
 
* [http://arxiv.org/abs/0802.2408 Why are solitons stable?] Terence Tao, 2008[http://xxx.lanl.gov/abs/q-alg/9712005 ]
 
* [http://www.ma.utexas.edu/users/uhlen/solitons/notes.pdf An Introduction to Wave Equations and Solitons] Richard S. Palais
 
* [http://www.ma.utexas.edu/users/uhlen/solitons/notes.pdf An Introduction to Wave Equations and Solitons] Richard S. Palais
* Richard S Palais, “The Symmetries of Solitons,” dg-ga/9708004 (August 8, 1997), http://arxiv.org/abs/dg-ga/9708004.  [http://dx.doi.org/10.1090/S0273-0979-97-00732-5 ]http://dx.doi.org/10.1090/S0273-0979-97-00732-5
+
* Richard S Palais, “The Symmetries of Solitons,” dg-ga/9708004 (August 8, 1997), http://arxiv.org/abs/dg-ga/9708004. [http://dx.doi.org/10.1090/S0273-0979-97-00732-5 ]http://dx.doi.org/10.1090/S0273-0979-97-00732-5
* Ford, Joseph. 1992. The Fermi-Pasta-Ulam problem: Paradox turns discovery. Physics Reports 213, no. 5 (May): 271-310. doi:[http://dx.doi.org/10.1016/0370-1573%2892%2990116-H 10.1016/0370-1573(92)90116-H]. [http://dx.doi.org/10.1216/RMJ-1978-8-1-413 ]
+
* Ford, Joseph. 1992. The Fermi-Pasta-Ulam problem: Paradox turns discovery. Physics Reports 213, no. 5 (May): 271-310. doi:[http://dx.doi.org/10.1016/0370-1573%2892%2990116-H 10.1016/0370-1573(92)90116-H]. [http://dx.doi.org/10.1216/RMJ-1978-8-1-413 ]
 
+
  
 
+
  
 
==articles==
 
==articles==
133번째 줄: 133번째 줄:
 
* [http://www.ams.org/journals/bull/1997-34-04/S0273-0979-97-00732-5/home.html The Symmetries of Solitons]Richard S. Palais, Journal: Bull. Amer. Math. Soc. 34 (1997), 339-403
 
* [http://www.ams.org/journals/bull/1997-34-04/S0273-0979-97-00732-5/home.html The Symmetries of Solitons]Richard S. Palais, Journal: Bull. Amer. Math. Soc. 34 (1997), 339-403
 
* [http://dx.doi.org/10.1143/PTPS.94.1%20 From Solitons to Knots and Links] Miki Wadati and Yasuhiro Akutsu, Prog. Theor. Phys. Supplement No.94 (1988) pp. 1-41
 
* [http://dx.doi.org/10.1143/PTPS.94.1%20 From Solitons to Knots and Links] Miki Wadati and Yasuhiro Akutsu, Prog. Theor. Phys. Supplement No.94 (1988) pp. 1-41
* Lax, P. D. 1996. Outline of a Theory of the KdV Equation in Recent Mathematical Methods in Nonlinear Wave Propagation. Lecture Notes in Mathematics, volume 1640, pp. 70–102. New York: Springer.
+
* Lax, P. D. 1996. Outline of a Theory of the KdV Equation in Recent Mathematical Methods in Nonlinear Wave Propagation. Lecture Notes in Mathematics, volume 1640, pp. 70–102. New York: Springer.
 
* Russell, J. S. 1844. Report on waves. In Report of the 14th Meeting of the British Association for the Advancement of Science, pp. 311–90. London: John Murray.
 
* Russell, J. S. 1844. Report on waves. In Report of the 14th Meeting of the British Association for the Advancement of Science, pp. 311–90. London: John Murray.
 
* Toda, M. 1989. Nonlinear Waves and Solitons. Dordrecht: Kluwer.
 
* Toda, M. 1989. Nonlinear Waves and Solitons. Dordrecht: Kluwer.
139번째 줄: 139번째 줄:
 
* [http://dx.doi.org/10.1216/RMJ-1978-8-1-413 http://dx.doi.org/10.1090/S0273-0979-97-00732-5]
 
* [http://dx.doi.org/10.1216/RMJ-1978-8-1-413 http://dx.doi.org/10.1090/S0273-0979-97-00732-5]
  
 
+
  
 
+
  
 
==question and answers(Math Overflow)==
 
==question and answers(Math Overflow)==
148번째 줄: 148번째 줄:
 
* http://mathoverflow.net/search?q=
 
* http://mathoverflow.net/search?q=
  
 
+
  
 
[[분류:개인노트]]
 
[[분류:개인노트]]
154번째 줄: 154번째 줄:
 
[[분류:math and physics]]
 
[[분류:math and physics]]
 
[[분류:migrate]]
 
[[분류:migrate]]
 +
 +
==메타데이터==
 +
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q464949 Q464949]
 +
===Spacy 패턴 목록===
 +
* [{'LEMMA': 'soliton'}]
 +
* [{'LOWER': 'soliton'}, {'LEMMA': 'wave'}]

2021년 2월 17일 (수) 01:39 기준 최신판

introduction

  • Solitons were discovered experimentally (Russell 1844)
  • analytically (Korteweg & de Vries, 1895)
    • modelling of Russell's discovery
    • 1-soliton solution
  • numerically (Zabusky & Kruskal 1965).
    • interaction of two 1-soliton solutions
    • they discovered that solitons of differenct sizes interact cleanly



meaning of soliton

  • "soliton" is used to describe their particle-like properties like bosons, fermions and hadrons
  • any localized nonlinear wave which interacts with another (arbitrary) local disturbance and always regains asymptotically its exact initial shape and velocity (allowing for a possible phase shift)



PDEs



important techniques



history




하위페이지


related items



computational resource



books


encyclopedia



expositions



articles

  • Solitons, Links and KnotsRichard Battye, Paul Sutcliffe, Proc. R. Soc. Lond. A 8 December 1999 vol. 455 no. 1992 4305-4331
  • The Symmetries of SolitonsRichard S. Palais, Journal: Bull. Amer. Math. Soc. 34 (1997), 339-403
  • From Solitons to Knots and Links Miki Wadati and Yasuhiro Akutsu, Prog. Theor. Phys. Supplement No.94 (1988) pp. 1-41
  • Lax, P. D. 1996. Outline of a Theory of the KdV Equation in Recent Mathematical Methods in Nonlinear Wave Propagation. Lecture Notes in Mathematics, volume 1640, pp. 70–102. New York: Springer.
  • Russell, J. S. 1844. Report on waves. In Report of the 14th Meeting of the British Association for the Advancement of Science, pp. 311–90. London: John Murray.
  • Toda, M. 1989. Nonlinear Waves and Solitons. Dordrecht: Kluwer.
  • Zabusky, N. J., and M. D. Kruskal. 1965. Interaction of solitons in a collisionless plasma and the recurrence of initial states. Physics Review Letters 15:240–43.
  • http://dx.doi.org/10.1090/S0273-0979-97-00732-5



question and answers(Math Overflow)

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LEMMA': 'soliton'}]
  • [{'LOWER': 'soliton'}, {'LEMMA': 'wave'}]