"Motive"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(사용자 3명의 중간 판 25개는 보이지 않습니다)
1번째 줄: 1번째 줄:
geometry roughly= cohomology
+
==introduction==
 +
* Voevodsky's derived category of motives is the main arena today for the study of algebraic cycles and motivic cohomology.
 +
* Feynman motive
  
 
 
  
examples
+
==encyclopedia==
 +
* [http://en.wikipedia.org/wiki/Motive_%28algebraic_geometry%29 http://en.wikipedia.org/wiki/Motive_(algebraic_geometry)]
  
circle S^1
 
  
Betti cohomolgy (singular cohomology)
+
==expositions==
 +
* Rios, Michael. “On a Final Theory of Mathematics and Physics.” arXiv:1502.04794 [hep-Th, Physics:physics], February 16, 2015. http://arxiv.org/abs/1502.04794.
 +
* Rej, Abhijnan, and Matilde Marcolli. “Motives: An Introductory Survey for Physicists.” arXiv:0907.4046 [hep-Th, Physics:math-Ph], July 23, 2009. http://arxiv.org/abs/0907.4046.
  
H^0(S^1,Z)=Z
+
==articles==
 +
* Dupont, Clément. “Odd Zeta Motive and Linear Forms in Odd Zeta Values.” arXiv:1601.00950 [math], January 5, 2016. http://arxiv.org/abs/1601.00950.
 +
* Totaro, Burt. “Adjoint Functors on the Derived Category of Motives.” arXiv:1502.05079 [math], February 17, 2015. http://arxiv.org/abs/1502.05079.
  
H^1(S^1,Z)=Z
 
  
 
+
[[분류:개인노트]]
 +
[[분류:math and physics]]
 +
[[분류:math]]
 +
[[분류:migrate]]
  
\mathbb{G}_m = \mathbb{C}^{x} = \mathbb{C}/{0} same homotopy class as S^1
+
==메타데이터==
 
+
===위키데이터===
Betti cohomology is same
+
* ID :  [https://www.wikidata.org/wiki/Q840594 Q840594]
 
+
===Spacy 패턴 목록===
H^0(\mathbb{G}_m,Z)=Z
+
* [{'LEMMA': 'motive'}]
 
+
* [{'LEMMA': 'Motif'}]
H^1(\mathbb{G}_m,Z)=Z , this is dual to H_1(\mathbb{G}_m,Z) we can call the generator as <math>\gamma_0^{\vee}</math> where <math>\gamma_0</math> is the homology generator.
 
 
 
 
 
 
 
de Rham cohomology
 
 
 
H^0_{dR}(\mathbb{G}_m)=\mathbb{C}
 
 
 
H^1_{dR}(\mathbb{G}_m)=\mathbb{C}\frac{dz}{z}
 
 
 
 
 
 
 
De Rham isomorphism
 
 
 
H^1(\mathbb{G}_m,Z) \times H^1_{dR}(\mathbb{G}_m) \to \mathbb{C} is a perfect pairing
 
 
 
(\gamma,\omega) \to \int_{\gamma}\omega
 
 
 
i.e. H^1_{dR}(\mathbb{G}_m) = ^1(\mathbb{G}_m,Z)\otimes_{\mathbb{Z}}\mathbb{C}
 
 
 
 
 
 
 
question. under this isomorphism, \frac{dz}{z} = c\times <math>\gamma_0^{\vee}</math>  what is c?
 
 
 
c = \int_{\gamma_0}
 

2021년 2월 17일 (수) 01:40 기준 최신판

introduction

  • Voevodsky's derived category of motives is the main arena today for the study of algebraic cycles and motivic cohomology.
  • Feynman motive


encyclopedia


expositions

  • Rios, Michael. “On a Final Theory of Mathematics and Physics.” arXiv:1502.04794 [hep-Th, Physics:physics], February 16, 2015. http://arxiv.org/abs/1502.04794.
  • Rej, Abhijnan, and Matilde Marcolli. “Motives: An Introductory Survey for Physicists.” arXiv:0907.4046 [hep-Th, Physics:math-Ph], July 23, 2009. http://arxiv.org/abs/0907.4046.

articles

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LEMMA': 'motive'}]
  • [{'LEMMA': 'Motif'}]