"Motive"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(사용자 3명의 중간 판 18개는 보이지 않습니다)
1번째 줄: 1번째 줄:
geometry roughly= cohomology
+
==introduction==
 +
* Voevodsky's derived category of motives is the main arena today for the study of algebraic cycles and motivic cohomology.
 +
* Feynman motive
  
 
 
  
example
+
==encyclopedia==
 +
* [http://en.wikipedia.org/wiki/Motive_%28algebraic_geometry%29 http://en.wikipedia.org/wiki/Motive_(algebraic_geometry)]
  
circle S^1
 
  
Betti cohomolgy (singular cohomology)
+
==expositions==
 +
* Rios, Michael. “On a Final Theory of Mathematics and Physics.” arXiv:1502.04794 [hep-Th, Physics:physics], February 16, 2015. http://arxiv.org/abs/1502.04794.
 +
* Rej, Abhijnan, and Matilde Marcolli. “Motives: An Introductory Survey for Physicists.” arXiv:0907.4046 [hep-Th, Physics:math-Ph], July 23, 2009. http://arxiv.org/abs/0907.4046.
  
H^0(S^1,Z)=Z
+
==articles==
 +
* Dupont, Clément. “Odd Zeta Motive and Linear Forms in Odd Zeta Values.” arXiv:1601.00950 [math], January 5, 2016. http://arxiv.org/abs/1601.00950.
 +
* Totaro, Burt. “Adjoint Functors on the Derived Category of Motives.” arXiv:1502.05079 [math], February 17, 2015. http://arxiv.org/abs/1502.05079.
  
H^1(S^1,Z)=Z
 
  
 
+
[[분류:개인노트]]
 +
[[분류:math and physics]]
 +
[[분류:math]]
 +
[[분류:migrate]]
  
\mathbb{G}_m = \mathbb{C}^{x} = \mathbb{C}/{0} same homotopy class as S^1
+
==메타데이터==
 
+
===위키데이터===
Betti cohomology is same
+
* ID :  [https://www.wikidata.org/wiki/Q840594 Q840594]
 
+
===Spacy 패턴 목록===
H^0(\mathbb{G}_m,Z)=Z
+
* [{'LEMMA': 'motive'}]
 
+
* [{'LEMMA': 'Motif'}]
H^1(\mathbb{G}_m,\mathbb{Z})=Z , this is dual to H_1(\mathbb{G}_m,Z) we can call the generator as <math>\gamma_0^{\vee}</math> where <math>\gamma_0</math> is the homology generator.
 
 
 
 
 
 
 
de Rham cohomology
 
 
 
H^0_{dR}(\mathbb{G}_m)=\mathbb{C}
 
 
 
H^1_{dR}(\mathbb{G}_m)=\mathbb{C}\frac{dz}{z}
 
 
 
 
 
 
 
De Rham isomorphism
 
 
 
H^1(\mathbb{G}_m,Z) \times H^1_{dR}(\mathbb{G}_m) \to \mathbb{C} is a perfect pairing
 
 
 
(\gamma,\omega) \to \int_{\gamma}\omega
 
 
 
i.e. H^1_{dR}(\mathbb{G}_m) = ^1(\mathbb{G}_m,Z)\otimes_{\mathbb{Z}}\mathbb{C}
 
 
 
 
 
 
 
question. under this isomorphism, \frac{dz}{z} = c\times <math>\gamma_0^{\vee}</math>  what is c?
 
 
 
c = \int_{\gamma_0}\frac{dz}{z} = 2\pi i
 
 
 
 
 
 
 
Etale cohomology
 
 
 
exponential map : \mathbb{C}\to \mathbb{C}^{*}
 
 
 
 
 
 
 
H^1(\mathbb{G}_m,\mathbb{Z}) = Hom(\pi_1(\mathbb{C}^{*}),\mathb{Z})
 
 
 
 
 
 
 
Let l be a prime.
 
 
 
H^1_{et}(\mathbb{G}_m,\mathbb{Q}_{l}) is a 1-dimensional \mathbb{Q}_{l} vector space on which Gal(\bar{\mathbb{Q}}/\mathbb{Q}) acts.
 
 
 
We get a character called the cyclotomic character.
 
 
 
 
 
 
 
 
 
 
 
general picture
 
 
 
k field (Q,F_q,C,\cdots)
 
 
 
from (separable finit type k-schemes) to category of motives
 
 
 
* Betti cohomology Vec over Q (Hodeg structure)
 
* de Rham cohomology Vec over k if char k = 0 (graded vector space)
 
* if l\neq char(k) etal cohomology vec over \mathbb{Q}_l (Galois representation)
 
* crystalline cohomology Vec over \mathbb{Q}_p
 
 
 
 
 
 
 
(category of motives) can do linear algebra
 
 
 
\mathbb{Q}-linear \otimes-category
 
 
 
 
 
 
 
bigger picture obtained when we compare cohomologies
 
 
 
Betti <-> de Rham , Hodge theory
 
 
 
crystalline(de Rham) <-> etale, p-adic Hodge theory
 
 
 
 
 
 
 
What we like in linear algebra :
 
 
 
1 dimension
 
 
 
2 f : V\to V, characteristic polynomial
 
 
 
 
 
 
 
something we don't know :
 
 
 
X over (k = \bar{k}), char(k)\neq 0
 
 
 
for all l prime to characteristic, dim_{\mathbb{Q}_l H^i_{et}(X,\mathbb{Q}_l)
 
 
 
We don't know how to show that these numbers are independent of l.
 
 
 
 
 
 
 
we know that if X over k is smooth and proper,
 
 
 
k=\bar{\mathbb{F}_q}, then we know that these numbers are independent of l (Deligne-Weil II, trace formula for etale cohomology)
 
 
 
X smooth, alternating sum of dimension, \sum(-1)^i dim_{\mathbb{Q}_l H^i_{et}(X,\mathbb{Q}_l) is independent of l. (intersection theory of cycles)
 
 
 
 
 
 
 
ex : elliptic curve
 
 
 
E : y^2=x^3-Ax-B, \Delta\neq 0 , A,B in \mathbb{Q}
 
 
 
over complex numbers, let \alpha, \beta generators H_1
 
 
 
H^0(E,\Omega^1_E) = \mathbb{C}\cdot \frac{dx}{2y}
 
 
 
\omega_{\alpha}=\int_{\alpha}\frac{dx}{2y}, \omega_{\beta}=\int_{\beta}\frac{dx}{2y} \in \mathbb{C}
 
 
 
These are linearly independent over real numbers so we get a lattice \Lambda=\mathbb{Z}\omega_{\alpha}+\mathbb{Z}\omega_{\beta}\subset \mathbb{C}
 
 
 
 
 
 
 
\int E(C)\to \mathbb{C}/\Lambda is an isomorphism
 
 
 
inverse map : Weierstrass \wp-function
 
 
 
 
 
 
 
abelian varieties form a \mathbb{Z}-linear category. So take a tensor with \mathbb{Q}
 
 
 
(abelian varieties)\otimes \mathbb{Q}  = (category of ab. varieties up to isogeny) . these are \mathbb{Q}-linear
 
 
 
this is inside the category of motives.
 
 
 
 
 
 
 
 
 
 
 
[http://en.wikipedia.org/wiki/Motive_%28algebraic_geometry%29 http://en.wikipedia.org/wiki/Motive_(algebraic_geometry)]
 

2021년 2월 17일 (수) 01:40 기준 최신판

introduction

  • Voevodsky's derived category of motives is the main arena today for the study of algebraic cycles and motivic cohomology.
  • Feynman motive


encyclopedia


expositions

  • Rios, Michael. “On a Final Theory of Mathematics and Physics.” arXiv:1502.04794 [hep-Th, Physics:physics], February 16, 2015. http://arxiv.org/abs/1502.04794.
  • Rej, Abhijnan, and Matilde Marcolli. “Motives: An Introductory Survey for Physicists.” arXiv:0907.4046 [hep-Th, Physics:math-Ph], July 23, 2009. http://arxiv.org/abs/0907.4046.

articles

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LEMMA': 'motive'}]
  • [{'LEMMA': 'Motif'}]