"Macdonald identities and affine Kac-Moody algerbras"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
(새 문서: * https://books.google.com.au/books?id=TvHNj3U8nroC&pg=PA367&lpg=PA367&dq=macdonald+affine+roots+system+kac-moody&source=bl&ots=OVoBAtrkiq&sig=kdtpWHP8DkoLLFSvwoh_DXRdPVs&hl=en&sa=X&e...)
 
 
(사용자 2명의 중간 판 5개는 보이지 않습니다)
1번째 줄: 1번째 줄:
 +
==introduction==
 +
* page 580 of http://www.mathunion.org/ICM/ICM1978.2/Main/icm1978.2.0579.0584.ocr.pdf
 +
 +
 +
==related items==
 +
* [[Lie algebra homology and root multiplicities]]
 +
 +
 +
==memo==
 +
* Lepowsky, J. “Affine Lie Algebras and Combinatorial Identities.” In Lie Algebras and Related Topics, edited by David Winter, 130–56. Lecture Notes in Mathematics 933. Springer Berlin Heidelberg, 1982. http://link.springer.com/chapter/10.1007/BFb0093358.
 +
* Lepowsky, J. "Lie algebras and combinatorics." Proc. Internat. Congr. Math.(Helsinki, 1978)(to appear) (1978). http://www.mathunion.org/ICM/ICM1978.2/Main/icm1978.2.0579.0584.ocr.pdf
 
* https://books.google.com.au/books?id=TvHNj3U8nroC&pg=PA367&lpg=PA367&dq=macdonald+affine+roots+system+kac-moody&source=bl&ots=OVoBAtrkiq&sig=kdtpWHP8DkoLLFSvwoh_DXRdPVs&hl=en&sa=X&ei=dqb3VImxIoLEmAX2uoHYAg&ved=0CDwQ6AEwBA#v=onepage&q=macdonald%20affine%20roots%20system%20kac-moody&f=false
 
* https://books.google.com.au/books?id=TvHNj3U8nroC&pg=PA367&lpg=PA367&dq=macdonald+affine+roots+system+kac-moody&source=bl&ots=OVoBAtrkiq&sig=kdtpWHP8DkoLLFSvwoh_DXRdPVs&hl=en&sa=X&ei=dqb3VImxIoLEmAX2uoHYAg&ved=0CDwQ6AEwBA#v=onepage&q=macdonald%20affine%20roots%20system%20kac-moody&f=false
 
* http://en.wikipedia.org/wiki/Affine_root_system
 
* http://en.wikipedia.org/wiki/Affine_root_system
 +
[[분류:migrate]]
 +
 +
==메타데이터==
 +
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q4688949 Q4688949]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'affine'}, {'LOWER': 'root'}, {'LEMMA': 'system'}]

2021년 2월 17일 (수) 01:40 기준 최신판

introduction


related items


memo

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'affine'}, {'LOWER': 'root'}, {'LEMMA': 'system'}]