"Ring of symmetric functions"의 두 판 사이의 차이
Pythagoras0 (토론 | 기여) |
Pythagoras0 (토론 | 기여) |
||
51번째 줄: | 51번째 줄: | ||
[[분류:migrate]] | [[분류:migrate]] | ||
− | == 메타데이터 == | + | ==메타데이터== |
− | |||
===위키데이터=== | ===위키데이터=== | ||
* ID : [https://www.wikidata.org/wiki/Q17102788 Q17102788] | * ID : [https://www.wikidata.org/wiki/Q17102788 Q17102788] | ||
+ | ===Spacy 패턴 목록=== | ||
+ | * [{'LOWER': 'ring'}, {'LOWER': 'of'}, {'LOWER': 'symmetric'}, {'LEMMA': 'function'}] |
2021년 2월 17일 (수) 01:41 기준 최신판
structure on ring of symmetric functions S
- commutative algebra
- cocommutative coalgebra
- antipode involutions
- symmetric bilinear form <,> algebra structure dual to coalgebra structure
- partial order \geq
- lots of bases
1,2,3 => commutative, cocommutative Hopf algebra, coordinate ring of a commutative group scheme
S\otimes \mathbb{Q} is UEA of a Lie algebra
list of places where algebra S of symmetric functions turns up
(1) ring of symmetric functions
(2) representation theory of symmetric group S_n
(3) representation theory of general linear group Gl_n
(4) homology of BU (classifying space for vector bundles)
(5) Cohomology of Grassmannians
(6) Schubert calculus
(7) universal \lambda ring on 1-generator
(8) coordinate ring of group scheme of power series 1+e_1x+e_2x^2+\cdots
(9) Hall algebra of finite abelian p-groups
(10) Polynomial functors of vector spaces
(11) underlying space of algebra of Bosons in 1-dim
메타데이터
위키데이터
- ID : Q17102788
Spacy 패턴 목록
- [{'LOWER': 'ring'}, {'LOWER': 'of'}, {'LOWER': 'symmetric'}, {'LEMMA': 'function'}]