"Bootstrap percolation"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(→‎메타데이터: 새 문단)
 
(같은 사용자의 중간 판 하나는 보이지 않습니다)
1번째 줄: 1번째 줄:
 
==introduction==
 
==introduction==
  
*  one of important question in 2d percolation is the calculation of power-law exponent for boostrap percolation
+
*  one of important question in 2d percolation is the calculation of power-law exponent for boostrap percolation
*  this is related to the theory of partitions without k-gaps  
+
*  this is related to the theory of partitions without k-gaps
  
 
+
  
 
==bootstrap percolation==
 
==bootstrap percolation==
13번째 줄: 13번째 줄:
 
* http://mathworld.wolfram.com/BootstrapPercolation.html
 
* http://mathworld.wolfram.com/BootstrapPercolation.html
  
 
+
  
 
+
  
 
==partitions without k-gaps==
 
==partitions without k-gaps==
21번째 줄: 21번째 줄:
 
*  partitions without k-gaps (or k-sequences)
 
*  partitions without k-gaps (or k-sequences)
 
*  p_k(n) is the number of partitions of n that do not contain any sequence of consecutive integers of length k. p_2 (7) = 8.
 
*  p_k(n) is the number of partitions of n that do not contain any sequence of consecutive integers of length k. p_2 (7) = 8.
*  examples: partition of 7 {{7},{6,1},{5,2},{5,1,1},{4,3},{4,2,1},{4,1,1,1},{3,3,1},{3,2,2},{3,2,1,1},{3,1,1,1,1},{2,2,2,1},{2,2,1,1,1},{2,1,1,1,1,1},{1,1,1,1,1,1,1}} 7, 6 + 1, 5 + 2, 5 + 1 + 1, 4 + 1 + 1 + 1, 3 + 3 + 1, 3 + 1 + 1 + 1 + 1, and 1 + 1 + 1 + 1 + 1 + 1 + 1. so there are 8 partitions without 2-gaps
+
*  examples: partition of 7 {{7},{6,1},{5,2},{5,1,1},{4,3},{4,2,1},{4,1,1,1},{3,3,1},{3,2,2},{3,2,1,1},{3,1,1,1,1},{2,2,2,1},{2,2,1,1,1},{2,1,1,1,1,1},{1,1,1,1,1,1,1}} 7, 6 + 1, 5 + 2, 5 + 1 + 1, 4 + 1 + 1 + 1, 3 + 3 + 1, 3 + 1 + 1 + 1 + 1, and 1 + 1 + 1 + 1 + 1 + 1 + 1. so there are 8 partitions without 2-gaps
 
*  Anderew's result
 
*  Anderew's result
 
**  generating function for partitions without k-gaps<math>G_2(q)=1+\sum_{n=1}^{\infty}\frac{q^n\prod_{j=1}^{n-1}(1-q^j+q^{2j})}{(q;q)_n}</math>[http://www.research.att.com/%7Enjas/sequences/A116931 A116931]
 
**  generating function for partitions without k-gaps<math>G_2(q)=1+\sum_{n=1}^{\infty}\frac{q^n\prod_{j=1}^{n-1}(1-q^j+q^{2j})}{(q;q)_n}</math>[http://www.research.att.com/%7Enjas/sequences/A116931 A116931]
  
#  (*define a gap as 'b' *) b := 2 G[b_, x_] :=  Sum[x^k*Product[1 + x^(b*j)/(1 - x^j), {j, 1, k - 1}]/(1 - x^k), {k,    1, 30}] Series[G[b, x], {x, 0, 20}] Table[SeriesCoefficient[%, n], {n, 0, 20}]
+
#  (*define a gap as 'b' *) b := 2 G[b_, x_] := Sum[x^k*Product[1 + x^(b*j)/(1 - x^j), {j, 1, k - 1}]/(1 - x^k), {k,   1, 30}] Series[G[b, x], {x, 0, 20}] Table[SeriesCoefficient[%, n], {n, 0, 20}]
  
 
* [[3 q-series|q-series]]
 
* [[3 q-series|q-series]]
  
 
+
  
 
+
  
 
==q-series from percolation==
 
==q-series from percolation==
  
 
*  definition<math>P_k(q)=(q;q)_{\infty}G_k(q)</math>
 
*  definition<math>P_k(q)=(q;q)_{\infty}G_k(q)</math>
*  Andrews and Zagier expression of <math>P_k(q)</math>
+
*  Andrews and Zagier expression of <math>P_k(q)</math>
*  result of '''[HLR04]''' if <math>q=e^{-t}</math> and  <math>t\sim 0</math><math>P_k(q) \sim \frac{-\lambda_k}{1-q}</math> as <math>q \to 1</math>
+
*  result of '''[HLR04]''' if <math>q=e^{-t}</math> and  <math>t\sim 0</math><math>P_k(q) \sim \frac{-\lambda_k}{1-q}</math> as <math>q \to 1</math>
  
 
+
  
 
+
  
 
==Andrews' conjecture on asymptotics==
 
==Andrews' conjecture on asymptotics==
  
*  asymptotics of P_2(q) is known <math>q=e^{-t}</math> 으로 두면 <math>t\sim 0</math> 일 때,<math>P_2(q) \sim \sqrt\frac{2\pi}{t}\exp(-\frac{\pi^2}{18t})</math>
+
*  asymptotics of P_2(q) is known <math>q=e^{-t}</math> 으로 두면 <math>t\sim 0</math> 때,<math>P_2(q) \sim \sqrt\frac{2\pi}{t}\exp(-\frac{\pi^2}{18t})</math>
*  conjecture<math>P_k(q) \sim \sqrt\frac{2\pi}{t}\exp(-\frac{\lambda_k}{t})</math> where <math>\lambda_k=\frac{\pi^2}{3k(k+1)}</math>
+
*  conjecture<math>P_k(q) \sim \sqrt\frac{2\pi}{t}\exp(-\frac{\lambda_k}{t})</math> where <math>\lambda_k=\frac{\pi^2}{3k(k+1)}</math>
  
 
+
  
 
+
  
==tricky integrals==
+
==tricky integrals==
  
*  Henrik Eriksson: [http://www.math.ubc.ca/~holroyd/integral.pdf A Tricky Integral]<math>f_1(x)=1-x</math><math>f_2(x)=\frac{1-x+\sqrt{(1-x)(1+3x)}}{2}</math>
+
*  Henrik Eriksson: [http://www.math.ubc.ca/~holroyd/integral.pdf A Tricky Integral]<math>f_1(x)=1-x</math><math>f_2(x)=\frac{1-x+\sqrt{(1-x)(1+3x)}}{2}</math>
 
* <math>\lambda_k=\frac{\pi^2}{3k(k+1)}</math>
 
* <math>\lambda_k=\frac{\pi^2}{3k(k+1)}</math>
 
* <math>\lambda_2=\frac{\pi^2}{18}</math>
 
* <math>\lambda_2=\frac{\pi^2}{18}</math>
  
 
+
  
 
+
  
 
==relevance to dedekind eta function==
 
==relevance to dedekind eta function==
  
*  Dedekind eta function ([http://pythagoras0.springnote.com/pages/3325777 데데킨트 에타함수])<math>q=e^{-t}</math> 으로 두면 <math>t\sim 0</math> 일 때,<math>\prod_{n=1}^{\infty}(1-q^n)=1+\sum_{n\geq 1}^{\infty}\frac{(-1)^nq^{n(n+1)/2}}{(q)_n}\sim \sqrt\frac{2\pi}{t}\exp(-\frac{\pi^2}{6t})</math> more generally, <math>q=\exp(\frac{2\pi ih}{k})e^{-t}</math>  and  <math>t\to 0</math> implies<math>\sqrt{\frac{t}{2\pi}}\exp({\frac{\pi^2}{6k^2t}})\eta(\frac{h}{k}+i\frac{t}{2\pi})\sim  \frac{\exp\left(\pi i (\frac{h}{12k}-s(h,k)\right)}{\sqrt{k}}</math>
+
*  Dedekind eta function ([http://pythagoras0.springnote.com/pages/3325777 데데킨트 에타함수])<math>q=e^{-t}</math> 으로 두면 <math>t\sim 0</math> 때,<math>\prod_{n=1}^{\infty}(1-q^n)=1+\sum_{n\geq 1}^{\infty}\frac{(-1)^nq^{n(n+1)/2}}{(q)_n}\sim \sqrt\frac{2\pi}{t}\exp(-\frac{\pi^2}{6t})</math> more generally, <math>q=\exp(\frac{2\pi ih}{k})e^{-t}</math> and  <math>t\to 0</math> implies<math>\sqrt{\frac{t}{2\pi}}\exp({\frac{\pi^2}{6k^2t}})\eta(\frac{h}{k}+i\frac{t}{2\pi})\sim  \frac{\exp\left(\pi i (\frac{h}{12k}-s(h,k)\right)}{\sqrt{k}}</math>
  
 
+
  
 
+
  
 
==related items==
 
==related items==
81번째 줄: 81번째 줄:
 
** [http://arxiv.org/abs/1002.3881 ]Janko Gravner, Alexander E. Holroyd, Robert Morris, 2010
 
** [http://arxiv.org/abs/1002.3881 ]Janko Gravner, Alexander E. Holroyd, Robert Morris, 2010
 
* [http://arxiv.org/abs/1001.1977 Improved bounds on metastability thresholds and probabilities for generalized bootstrap percolation]
 
* [http://arxiv.org/abs/1001.1977 Improved bounds on metastability thresholds and probabilities for generalized bootstrap percolation]
** [http://arxiv.org/find/math/1/au:+Bringmann_K/0/1/0/all/0/1 Kathrin Bringmann], [http://arxiv.org/find/math/1/au:+Mahlburg_K/0/1/0/all/0/1 Karl Mahlburg], 2010
+
** [http://arxiv.org/find/math/1/au:+Bringmann_K/0/1/0/all/0/1 Kathrin Bringmann], [http://arxiv.org/find/math/1/au:+Mahlburg_K/0/1/0/all/0/1 Karl Mahlburg], 2010
 
* [http://dx.doi.org/10.1016/j.jcta.2006.06.010 Integrals, partitions and MacMahon's Theorem]
 
* [http://dx.doi.org/10.1016/j.jcta.2006.06.010 Integrals, partitions and MacMahon's Theorem]
**  George Andrewsa,  Dan Romik, 2007
+
**  George Andrewsa, Dan Romik, 2007
 
*  Slow convergence
 
*  Slow convergence
 
* [http://www.pnas.org/content/102/13/4666.full Partitions with short sequences and mock theta functions]
 
* [http://www.pnas.org/content/102/13/4666.full Partitions with short sequences and mock theta functions]
 
**  George E. Andrews, 2005
 
**  George E. Andrews, 2005
 
* '''[HLR04]'''[http://research.microsoft.com/en-us/um/people/holroyd/papers/int.pdf Integrals, Partitions, and Cellular Automata]
 
* '''[HLR04]'''[http://research.microsoft.com/en-us/um/people/holroyd/papers/int.pdf Integrals, Partitions, and Cellular Automata]
**  A. E. Holroyd, T. M. Liggett & D. Romik, Transactions of the American Mathematical Society, 2004, Vol 356, 3349-3368
+
**  A. E. Holroyd, T. M. Liggett & D. Romik, Transactions of the American Mathematical Society, 2004, Vol 356, 3349-3368
 
* [http://www.springerlink.com/content/g420hc5h6qu6e65x/ sharp metastability threshold for two-dimensional bootstrap percolation]
 
* [http://www.springerlink.com/content/g420hc5h6qu6e65x/ sharp metastability threshold for two-dimensional bootstrap percolation]
 
**  Alexander E. Holroyd, 2003
 
**  Alexander E. Holroyd, 2003
 
+
 
[[분류:integrable systems]]
 
[[분류:integrable systems]]
 
[[분류:math and physics]]
 
[[분류:math and physics]]
 
[[분류:migrate]]
 
[[분류:migrate]]
  
== 메타데이터 ==
+
==메타데이터==
 
 
 
===위키데이터===
 
===위키데이터===
 
* ID :  [https://www.wikidata.org/wiki/Q25305507 Q25305507]
 
* ID :  [https://www.wikidata.org/wiki/Q25305507 Q25305507]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'bootstrap'}, {'LEMMA': 'percolation'}]

2021년 2월 17일 (수) 02:59 기준 최신판

introduction

  • one of important question in 2d percolation is the calculation of power-law exponent for boostrap percolation
  • this is related to the theory of partitions without k-gaps


bootstrap percolation



partitions without k-gaps

  • partitions without k-gaps (or k-sequences)
  • p_k(n) is the number of partitions of n that do not contain any sequence of consecutive integers of length k. p_2 (7) = 8.
  • examples: partition of 7 {{7},{6,1},{5,2},{5,1,1},{4,3},{4,2,1},{4,1,1,1},{3,3,1},{3,2,2},{3,2,1,1},{3,1,1,1,1},{2,2,2,1},{2,2,1,1,1},{2,1,1,1,1,1},{1,1,1,1,1,1,1}} 7, 6 + 1, 5 + 2, 5 + 1 + 1, 4 + 1 + 1 + 1, 3 + 3 + 1, 3 + 1 + 1 + 1 + 1, and 1 + 1 + 1 + 1 + 1 + 1 + 1. so there are 8 partitions without 2-gaps
  • Anderew's result
    • generating function for partitions without k-gaps\(G_2(q)=1+\sum_{n=1}^{\infty}\frac{q^n\prod_{j=1}^{n-1}(1-q^j+q^{2j})}{(q;q)_n}\)A116931
  1. (*define a gap as 'b' *) b := 2 G[b_, x_] := Sum[x^k*Product[1 + x^(b*j)/(1 - x^j), {j, 1, k - 1}]/(1 - x^k), {k, 1, 30}] Series[G[b, x], {x, 0, 20}] Table[SeriesCoefficient[%, n], {n, 0, 20}]



q-series from percolation

  • definition\(P_k(q)=(q;q)_{\infty}G_k(q)\)
  • Andrews and Zagier expression of \(P_k(q)\)
  • result of [HLR04] if \(q=e^{-t}\) and \(t\sim 0\)\(P_k(q) \sim \frac{-\lambda_k}{1-q}\) as \(q \to 1\)



Andrews' conjecture on asymptotics

  • asymptotics of P_2(q) is known \(q=e^{-t}\) 으로 두면 \(t\sim 0\) 일 때,\(P_2(q) \sim \sqrt\frac{2\pi}{t}\exp(-\frac{\pi^2}{18t})\)
  • conjecture\(P_k(q) \sim \sqrt\frac{2\pi}{t}\exp(-\frac{\lambda_k}{t})\) where \(\lambda_k=\frac{\pi^2}{3k(k+1)}\)



tricky integrals

  • Henrik Eriksson: A Tricky Integral\(f_1(x)=1-x\)\(f_2(x)=\frac{1-x+\sqrt{(1-x)(1+3x)}}{2}\)
  • \(\lambda_k=\frac{\pi^2}{3k(k+1)}\)
  • \(\lambda_2=\frac{\pi^2}{18}\)



relevance to dedekind eta function

  • Dedekind eta function (데데킨트 에타함수)\(q=e^{-t}\) 으로 두면 \(t\sim 0\) 일 때,\(\prod_{n=1}^{\infty}(1-q^n)=1+\sum_{n\geq 1}^{\infty}\frac{(-1)^nq^{n(n+1)/2}}{(q)_n}\sim \sqrt\frac{2\pi}{t}\exp(-\frac{\pi^2}{6t})\) more generally, \(q=\exp(\frac{2\pi ih}{k})e^{-t}\) and \(t\to 0\) implies\(\sqrt{\frac{t}{2\pi}}\exp({\frac{\pi^2}{6k^2t}})\eta(\frac{h}{k}+i\frac{t}{2\pi})\sim \frac{\exp\left(\pi i (\frac{h}{12k}-s(h,k)\right)}{\sqrt{k}}\)



related items


articles

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'bootstrap'}, {'LEMMA': 'percolation'}]