"Talk on 'introduction to conformal field theory(CFT)'"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(사용자 3명의 중간 판 17개는 보이지 않습니다)
1번째 줄: 1번째 줄:
<h5>introduction</h5>
+
==introduction==
  
 
* scaling and power law
 
* scaling and power law
 
* scale invariance and conformal invariance
 
* scale invariance and conformal invariance
 +
*  critical phenomena
 +
** http://scienceon.hani.co.kr/archives/13339
 +
** http://scienceon.hani.co.kr/archives/13941
 +
** http://scienceon.hani.co.kr/archives/14664
  
 
+
  
 
+
==scale invariacne and power law==
  
<h5>scale invariacne and power law</h5>
+
Scale Invariance of power law functions The function y=xp is "scale-invariant" in the following sense.  Consider an interval such as (x,2x), where y changes from xp to  2pxp.  Now scale x by a scale factor a.  We look at the interval (ax,2ax) where y changes from (ax)p to 2p(ax)p.  We see that y in this interval is the same (except for a scale change of ap) as y in the unscaled interval. Most functions do not behave this way.  Consider y=exp(x), which goes [from exp(x) to exp(2x)] over the interval (x,2x), and [from exp(ax) to exp(2ax)] in the scaled interval (ax,2ax).  There is no scale factor that can be removed from y to make the second interval of y appear the same as the first. The sum of two different powers is usually not scale invariant.  However, special cases may still be.  y=Ax2 + Bx can be written as A(x+B/2A)2 -B2/4A.  If the new variable X=x+B/2A is scaled to aX, then y(aX)=a2Y(X)+(a2-1)(B2/4A).  In other words, the function y(x) is scale invariant (with scaling exponent 2) after finding the right scaling variable X and allowing for a scale-dependent shift of y.
  
Scale Invariance of power law functions<br> The function y=xp is "scale-invariant" in the following sense.  Consider an interval such as (x,2x), where y changes from xp to  2pxp.  Now scale x by a scale factor a.  We look at the interval (ax,2ax) where y changes from (ax)p to 2p(ax)p.  We see that y in this interval is the same (except for a scale change of ap) as y in the unscaled interval.<br> Most functions do not behave this way.  Consider y=exp(x), which goes [from exp(x) to exp(2x)] over the interval (x,2x), and [from exp(ax) to exp(2ax)] in the scaled interval (ax,2ax).  There is no scale factor that can be removed from y to make the second interval of y appear the same as the first.<br> The sum of two different powers is usually not scale invariant.  However, special cases may still be.  y=Ax2 + Bx can be written as A(x+B/2A)2 -B2/4A.  If the new variable X=x+B/2A is scaled to aX, then y(aX)=a2Y(X)+(a2-1)(B2/4A).  In other words, the function y(x) is scale invariant (with scaling exponent 2) after finding the right scaling variable X and allowing for a scale-dependent shift of y.
+
  
 
+
  
 
+
==critical phenomena==
  
<h5>critical phenomena</h5>
+
* [[critical phenomena]]
  
  In this sense, '''the thermodynamic functions seem to display scale invariance around the critical point (for systems that have a critical point!), with the scaling variable t=(1-T/Tc).'''  Note that the logarithm y=log x obeys y(ax)=y(x) + log a.  It is scale invariant with exponent 0 (and a scale-dependent shift.)  This is related to the famous formula<br>     limp-->0 (x^p-1)/p = log x<br> which shows that logs are a special case of power law functions with power 0.
+
  
 
+
  
 
+
==correlation at large distance==
  
<h5>correlation at large distance</h5>
+
* [[universality class and critical exponent]]
 +
* appearance of correlations at large distance, a situation that is encountered in second order phase transitions, near the critical temperature.
 +
*  the critical exponent describes the behavior of physical quantities around the critical temperature e.g. magnetization
 +
:<math>M\sim (T_C-T)^{1/8}</math>
 +
* magnetization and susceptibility can be written as '''correlation functions'''
 +
large distance behavior of spin at criticality <math>\eta=1/4</math>
 +
:<math>\langle \sigma_{i}\sigma_{i+n}\rangle =\frac{1}{|n|^{\eta}}</math>
 +
*  correlation length critivel exponent <math>\nu=1</math>
 +
:<math>\langle \epsilon_{i}\epsilon_{i+n}\rangle=\frac{1}{|n|^{4-\frac{2}{\nu}}}</math>
  
appearance of correlations at large distance, a situation that is encountered in second order phase transitions, near the critical temperature.
+
  
* [[basics of magnetism]]
+
==conformal transformations==
  
 
+
*  roughly, local dilations
 
 
 
 
 
 
*  the critical exponent describes the behavior of physical quantities around the critical temperature<br> e.g. magnetization <math>M\sim (T-T_C)^{1/8}</math><br>
 
* magnetization and susceptibility can be written as '''correlation functions'''
 
* there are six critical exponent for Ising model
 
* 2 microscopit critical exponents
 
*  large distance behavior of spin at criticality <math>\eta=1/4</math><br><math><\sigma_{i}\sigma_{i+n}>=\frac{1}{|n|^{\eta}}</math><br>
 
*  correlation length critivel exponent <math>\nu=1</math><br><math><\epsilon_{i}\epsilon_{i+n}>=\frac{1}{|n|^{4-\frac{2}{\nu}}}</math><br>
 
 
 
 
 
 
 
<h5>conformal transformations</h5>
 
 
 
*  roughly, local dilations<br>
 
 
** this is also equivalent to local scale invariance
 
** this is also equivalent to local scale invariance
 
* correlation functions do not change under conformal transformations
 
* correlation functions do not change under conformal transformations
  
 
+
 
 
 
 
 
 
<h5>history</h5>
 
 
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
 
 
 
 
 
 
 
 
 
 
<h5>related items</h5>
 
 
 
* [[5 conformal field theory(CFT)|5 conformal field theory]]
 
 
 
 
 
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">encyclopedia</h5>
 
 
 
* http://en.wikipedia.org/wiki/
 
* http://www.scholarpedia.org/
 
* http://www.proofwiki.org/wiki/
 
* Princeton companion to mathematics([[2910610/attachments/2250873|Companion_to_Mathematics.pdf]])
 
  
 
+
  
 
+
==related items==
 +
* [[Expositions on conformal field theory]]
 +
* [[conformal field theory (CFT)]]
  
<h5>books</h5>
+
==expositions==
 
 
 
 
 
 
* [[2010년 books and articles]]<br>
 
* http://gigapedia.info/1/
 
* http://gigapedia.info/1/
 
* http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
 
 
 
 
 
 
 
 
 
 
 
<h5>expositions</h5>
 
  
 
* [http://felix.physics.sunysb.edu/%7Eallen/540-05/scaling.html Scale Invariance of power law functions]
 
* [http://felix.physics.sunysb.edu/%7Eallen/540-05/scaling.html Scale Invariance of power law functions]
  
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles</h5>
 
 
 
 
 
* http://www.ams.org/mathscinet
 
* http://www.zentralblatt-math.org/zmath/en/
 
* http://arxiv.org/
 
* http://www.pdf-search.org/
 
* http://pythagoras0.springnote.com/
 
* [http://math.berkeley.edu/%7Ereb/papers/index.html http://math.berkeley.edu/~reb/papers/index.html]
 
* http://dx.doi.org/
 
 
 
 
 
 
 
 
<h5>question and answers(Math Overflow)</h5>
 
 
* http://mathoverflow.net/search?q=
 
* http://mathoverflow.net/search?q=
 
 
 
 
 
 
 
 
<h5>blogs</h5>
 
 
*  구글 블로그 검색<br>
 
**  http://blogsearch.google.com/blogsearch?q=<br>
 
** http://blogsearch.google.com/blogsearch?q=
 
* http://ncatlab.org/nlab/show/HomePage
 
 
 
 
 
 
 
 
<h5>experts on the field</h5>
 
 
* http://arxiv.org/
 
 
 
 
 
 
 
  
<h5>links</h5>
+
[[분류:개인노트]]
 +
[[분류:talks and lecture notes]]
 +
[[분류:migrate]]
  
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]
+
==메타데이터==
* [http://pythagoras0.springnote.com/pages/1947378 수식표현 안내]
+
===위키데이터===
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
+
* ID :  [https://www.wikidata.org/wiki/Q849798 Q849798]
* http://functions.wolfram.com/
+
===Spacy 패턴 목록===
 +
* [{'LOWER': 'knot'}, {'LEMMA': 'theory'}]

2021년 2월 17일 (수) 03:00 기준 최신판

introduction


scale invariacne and power law

Scale Invariance of power law functions The function y=xp is "scale-invariant" in the following sense. Consider an interval such as (x,2x), where y changes from xp to 2pxp. Now scale x by a scale factor a. We look at the interval (ax,2ax) where y changes from (ax)p to 2p(ax)p. We see that y in this interval is the same (except for a scale change of ap) as y in the unscaled interval. Most functions do not behave this way. Consider y=exp(x), which goes [from exp(x) to exp(2x)] over the interval (x,2x), and [from exp(ax) to exp(2ax)] in the scaled interval (ax,2ax). There is no scale factor that can be removed from y to make the second interval of y appear the same as the first. The sum of two different powers is usually not scale invariant. However, special cases may still be. y=Ax2 + Bx can be written as A(x+B/2A)2 -B2/4A. If the new variable X=x+B/2A is scaled to aX, then y(aX)=a2Y(X)+(a2-1)(B2/4A). In other words, the function y(x) is scale invariant (with scaling exponent 2) after finding the right scaling variable X and allowing for a scale-dependent shift of y.



critical phenomena



correlation at large distance

  • universality class and critical exponent
  • appearance of correlations at large distance, a situation that is encountered in second order phase transitions, near the critical temperature.
  • the critical exponent describes the behavior of physical quantities around the critical temperature e.g. magnetization

\[M\sim (T_C-T)^{1/8}\]

  • magnetization and susceptibility can be written as correlation functions
  • large distance behavior of spin at criticality \(\eta=1/4\)

\[\langle \sigma_{i}\sigma_{i+n}\rangle =\frac{1}{|n|^{\eta}}\]

  • correlation length critivel exponent \(\nu=1\)

\[\langle \epsilon_{i}\epsilon_{i+n}\rangle=\frac{1}{|n|^{4-\frac{2}{\nu}}}\]


conformal transformations

  • roughly, local dilations
    • this is also equivalent to local scale invariance
  • correlation functions do not change under conformal transformations



related items

expositions

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'knot'}, {'LEMMA': 'theory'}]