"Umbral moonshine"의 두 판 사이의 차이
imported>Pythagoras0  (section 'expositions' updated)  | 
				Pythagoras0 (토론 | 기여)   | 
				||
| (사용자 2명의 중간 판 5개는 보이지 않습니다) | |||
| 1번째 줄: | 1번째 줄: | ||
==introduction==  | ==introduction==  | ||
* generalization of [[Mathieu moonshine]]  | * generalization of [[Mathieu moonshine]]  | ||
| − | * Let   | + | * Let <math>k\in \{1,2,3,4,6,8\}</math> or <math>\ell=k+1\in \{2,3,4,5,7,9\}</math>  | 
| − | + | :<math>  | |
\frac{24}{\ell-1}-1\in \{23,11,7,5,3,2\}  | \frac{24}{\ell-1}-1\in \{23,11,7,5,3,2\}  | ||
| − | + | </math>  | |
* properties  | * properties  | ||
| − | ** primes dividing   | + | ** primes dividing <math>|M_{24}|=244823040</math>  | 
| − | **   | + | ** <math>(p+1)|24</math>  | 
| − | **   | + | ** <math>\rm{PSL}(2,\mathbb{F}_p)\subset M_{24}</math>  | 
* there exists a relation between all 23 cases of umbral moonshine and K3 sigma models  | * there exists a relation between all 23 cases of umbral moonshine and K3 sigma models  | ||
==examples==  | ==examples==  | ||
| − | ===  | + | ===<math>k=1</math>===  | 
| − | * [[Mathieu moonshine]] corresponds to   | + | * [[Mathieu moonshine]] corresponds to <math>k=1</math> case  | 
| − | * decomposition of   | + | * decomposition of <math>Z_{K3}=2\varphi_{0,1}(\tau,z)</math>  | 
| − | ===  | + | ===<math>k=2</math>===  | 
| − | *   | + | * <math>k=2</math> moonshine with <math>2.M_{12}</math>  | 
* decomposition of weight 0 and index 2 Jacobi forms  | * decomposition of weight 0 and index 2 Jacobi forms  | ||
| − | + | :<math>  | |
Z_{X_2^{(1)}}=\left(\varphi_{0,1}(\tau,z)^2+2E_{4}\varphi_{-2,1}(\tau,z)^2\right)=144C_2(z;\tau)-\sum_{a=2}^{2}\Sigma_{X_2^{(1)}}^{(a)}B_2^{(a)}(z;\tau),  | Z_{X_2^{(1)}}=\left(\varphi_{0,1}(\tau,z)^2+2E_{4}\varphi_{-2,1}(\tau,z)^2\right)=144C_2(z;\tau)-\sum_{a=2}^{2}\Sigma_{X_2^{(1)}}^{(a)}B_2^{(a)}(z;\tau),  | ||
| − | + | </math>  | |
| − | + | :<math>Z_{X_2^{(2)}}=\varphi^{(3)}=\left(\varphi_{0,1}(\tau,z)^2-E_{4}\varphi_{-2,1}(\tau,z)^2\right)/24=6C_2(z;\tau)-\sum_{a=2}^{2}\Sigma_{X_2^{(2)}}^{(a)}B_2^{(a)}(z;\tau)</math>  | |
where  | where  | ||
| − | + | :<math>  | |
\Sigma_{X_2^{(1)}}^{(1)}=q^{-1/12}(18-1872q-26070q^2-\cdots),  | \Sigma_{X_2^{(1)}}^{(1)}=q^{-1/12}(18-1872q-26070q^2-\cdots),  | ||
| − | + | </math>  | |
| − | + | :<math>  | |
\Sigma_{X_2^{(1)}}^{(2)}=q^{-1/3}(3+510q+12804q^2+\cdots),  | \Sigma_{X_2^{(1)}}^{(2)}=q^{-1/3}(3+510q+12804q^2+\cdots),  | ||
| − | + | </math>  | |
| − | + | :<math>  | |
\Sigma_{X_2^{(2)}}^{(1)}=q^{-1/12}(1-16q-55q^2-144q^3-\cdots),  | \Sigma_{X_2^{(2)}}^{(1)}=q^{-1/12}(1-16q-55q^2-144q^3-\cdots),  | ||
| − | + | </math>  | |
| − | + | :<math>  | |
\Sigma_{X_2^{(2)}}^{(2)}=q^{-1/3}(-10q-44q^2-110q^3-\cdots)  | \Sigma_{X_2^{(2)}}^{(2)}=q^{-1/3}(-10q-44q^2-110q^3-\cdots)  | ||
| − | + | </math>  | |
==Jacobi form==  | ==Jacobi form==  | ||
* [[Jacobi forms]]  | * [[Jacobi forms]]  | ||
| − | + | :<math>  | |
\varphi_{0,1}(\tau,z)=4\left[\left(\frac{\theta_{10}(z;\tau)}{\theta_{10}(0;\tau)}\right)+\left(\frac{\theta_{00}(z;\tau)}{\theta_{00}(0;\tau)}\right)+\left(\frac{\theta_{01}(z;\tau)}{\theta_{01}(0;\tau)}\right)\right],\\  | \varphi_{0,1}(\tau,z)=4\left[\left(\frac{\theta_{10}(z;\tau)}{\theta_{10}(0;\tau)}\right)+\left(\frac{\theta_{00}(z;\tau)}{\theta_{00}(0;\tau)}\right)+\left(\frac{\theta_{01}(z;\tau)}{\theta_{01}(0;\tau)}\right)\right],\\  | ||
\varphi_{-2,1}(\tau,z)=\frac{-\theta_{11}(z;\tau)^2}{\eta(\tau)^6}  | \varphi_{-2,1}(\tau,z)=\frac{-\theta_{11}(z;\tau)^2}{\eta(\tau)^6}  | ||
| − | + | </math>  | |
| − | ==  | + | ==<math>\mathcal{N}=4</math> super conformal algebra==  | 
| − | *   | + | * <math>c=6k</math>, <math>k\in \mathbb{Z}_{\geq 1}</math>  | 
* two types of representations : BPS and non-BPS  | * two types of representations : BPS and non-BPS  | ||
| 62번째 줄: | 62번째 줄: | ||
==umbral forms==  | ==umbral forms==  | ||
| − | *   | + | * <math>H^{(\ell)}=(H_r^{\ell})_{1\leq r \leq \ell-1}</math> is a vector valued mock modular form with shadows  | 
| − | + | :<math>  | |
\chi^{(\ell)}\cdot S_{r}^{(\ell)}=\sum_{n\in \mathbb{Z}}(2\ell n+r)q^{(2\ell n+r)^2/4\ell}  | \chi^{(\ell)}\cdot S_{r}^{(\ell)}=\sum_{n\in \mathbb{Z}}(2\ell n+r)q^{(2\ell n+r)^2/4\ell}  | ||
| − | + | </math>  | |
| − | where   | + | where <math>\chi^{(\ell)}=24/(\ell-1)</math>  | 
| − | * For example,   | + | * For example, <math>H^{(2)}</math> is a mock modular form with shadow <math>24\eta(\tau)^3</math>  | 
| − | * More generally, we have Mckay-Thompson series for each conjugacy class   | + | * More generally, we have Mckay-Thompson series for each conjugacy class <math>g\in G^{\ell}</math>  | 
| − | + | :<math>  | |
H_{r,g}^{(\ell)}  | H_{r,g}^{(\ell)}  | ||
| − | + | </math>  | |
| 92번째 줄: | 92번째 줄: | ||
* [[Characters of superconformal algebra and mock theta functions]]  | * [[Characters of superconformal algebra and mock theta functions]]  | ||
* [[K3 surfaces]]  | * [[K3 surfaces]]  | ||
| + | * [[Mock Jacobi form]]  | ||
==computational resource==  | ==computational resource==  | ||
| 104번째 줄: | 105번째 줄: | ||
==articles==  | ==articles==  | ||
| + | * Miranda C. N. Cheng, John F. R. Duncan, Optimal Mock Jacobi Theta Functions, arXiv:1605.04480 [math.NT], May 14 2016, http://arxiv.org/abs/1605.04480  | ||
* Tohru Eguchi, Yuji Sugawara, Duality in N=4 Liouville Theory and Moonshine Phenomena, http://arxiv.org/abs/1603.02903v1  | * Tohru Eguchi, Yuji Sugawara, Duality in N=4 Liouville Theory and Moonshine Phenomena, http://arxiv.org/abs/1603.02903v1  | ||
* Cheng, Miranda C. N., Francesca Ferrari, Sarah M. Harrison, and Natalie M. Paquette. “Landau-Ginzburg Orbifolds and Symmetries of K3 CFTs.” arXiv:1512.04942 [hep-Th], December 15, 2015. http://arxiv.org/abs/1512.04942.  | * Cheng, Miranda C. N., Francesca Ferrari, Sarah M. Harrison, and Natalie M. Paquette. “Landau-Ginzburg Orbifolds and Symmetries of K3 CFTs.” arXiv:1512.04942 [hep-Th], December 15, 2015. http://arxiv.org/abs/1512.04942.  | ||
| 118번째 줄: | 120번째 줄: | ||
[[분류:Mock modular forms]]  | [[분류:Mock modular forms]]  | ||
[[분류:Number theory and physics]]  | [[분류:Number theory and physics]]  | ||
| + | [[분류:migrate]]  | ||
| + | |||
| + | ==메타데이터==  | ||
| + | ===위키데이터===  | ||
| + | * ID :  [https://www.wikidata.org/wiki/Q7881385 Q7881385]  | ||
| + | ===Spacy 패턴 목록===  | ||
| + | * [{'LOWER': 'umbral'}, {'LEMMA': 'moonshine'}]  | ||
2021년 2월 17일 (수) 02:01 기준 최신판
introduction
- generalization of Mathieu moonshine
 - Let \(k\in \{1,2,3,4,6,8\}\) or \(\ell=k+1\in \{2,3,4,5,7,9\}\)
 
\[ \frac{24}{\ell-1}-1\in \{23,11,7,5,3,2\} \]
- properties
- primes dividing \(|M_{24}|=244823040\)
 - \((p+1)|24\)
 - \(\rm{PSL}(2,\mathbb{F}_p)\subset M_{24}\)
 
 - there exists a relation between all 23 cases of umbral moonshine and K3 sigma models
 
examples
\(k=1\)
- Mathieu moonshine corresponds to \(k=1\) case
 - decomposition of \(Z_{K3}=2\varphi_{0,1}(\tau,z)\)
 
\(k=2\)
- \(k=2\) moonshine with \(2.M_{12}\)
 - decomposition of weight 0 and index 2 Jacobi forms
 
\[ Z_{X_2^{(1)}}=\left(\varphi_{0,1}(\tau,z)^2+2E_{4}\varphi_{-2,1}(\tau,z)^2\right)=144C_2(z;\tau)-\sum_{a=2}^{2}\Sigma_{X_2^{(1)}}^{(a)}B_2^{(a)}(z;\tau), \] \[Z_{X_2^{(2)}}=\varphi^{(3)}=\left(\varphi_{0,1}(\tau,z)^2-E_{4}\varphi_{-2,1}(\tau,z)^2\right)/24=6C_2(z;\tau)-\sum_{a=2}^{2}\Sigma_{X_2^{(2)}}^{(a)}B_2^{(a)}(z;\tau)\] where \[ \Sigma_{X_2^{(1)}}^{(1)}=q^{-1/12}(18-1872q-26070q^2-\cdots), \] \[ \Sigma_{X_2^{(1)}}^{(2)}=q^{-1/3}(3+510q+12804q^2+\cdots), \] \[ \Sigma_{X_2^{(2)}}^{(1)}=q^{-1/12}(1-16q-55q^2-144q^3-\cdots), \] \[ \Sigma_{X_2^{(2)}}^{(2)}=q^{-1/3}(-10q-44q^2-110q^3-\cdots) \]
Jacobi form
\[ \varphi_{0,1}(\tau,z)=4\left[\left(\frac{\theta_{10}(z;\tau)}{\theta_{10}(0;\tau)}\right)+\left(\frac{\theta_{00}(z;\tau)}{\theta_{00}(0;\tau)}\right)+\left(\frac{\theta_{01}(z;\tau)}{\theta_{01}(0;\tau)}\right)\right],\\ \varphi_{-2,1}(\tau,z)=\frac{-\theta_{11}(z;\tau)^2}{\eta(\tau)^6} \]
\(\mathcal{N}=4\) super conformal algebra
- \(c=6k\), \(k\in \mathbb{Z}_{\geq 1}\)
 - two types of representations : BPS and non-BPS
 
extremal Jacobi forms
mock modular form
umbral forms
- \(H^{(\ell)}=(H_r^{\ell})_{1\leq r \leq \ell-1}\) is a vector valued mock modular form with shadows
 
\[ \chi^{(\ell)}\cdot S_{r}^{(\ell)}=\sum_{n\in \mathbb{Z}}(2\ell n+r)q^{(2\ell n+r)^2/4\ell} \] where \(\chi^{(\ell)}=24/(\ell-1)\)
- For example, \(H^{(2)}\) is a mock modular form with shadow \(24\eta(\tau)^3\)
 - More generally, we have Mckay-Thompson series for each conjugacy class \(g\in G^{\ell}\)
 
\[ H_{r,g}^{(\ell)} \]
umbral groups
\begin{array}{l|l|l|I|I} \ell & 2 & 3 & 4 & 5 & 7 & 9 \\ \hline G & M_{24} & M_{12} & & & &\\ \overline{G} & M_{24} & 2.M_{12} & 2.AGL_{3}(2) & GL_2(5)/2 & SL_2(3) & \mathbb{Z}/4 \\ \end{array}
umbral moonshine conjecture
- Quantum black holes, wall crossing and mock modular forms
 - Mathieu moonshine
 - monstrous moonshine
 - Characters of superconformal algebra and mock theta functions
 - K3 surfaces
 - Mock Jacobi form
 
computational resource
expositions
- Shamit Kachru, Elementary introduction to Moonshine, arXiv:1605.00697 [hep-th], May 02 2016, http://arxiv.org/abs/1605.00697
 - Cheng Umbral moonshine
 - Harvey Moonshine and mock modular forms
 
articles
- Miranda C. N. Cheng, John F. R. Duncan, Optimal Mock Jacobi Theta Functions, arXiv:1605.04480 [math.NT], May 14 2016, http://arxiv.org/abs/1605.04480
 - Tohru Eguchi, Yuji Sugawara, Duality in N=4 Liouville Theory and Moonshine Phenomena, http://arxiv.org/abs/1603.02903v1
 - Cheng, Miranda C. N., Francesca Ferrari, Sarah M. Harrison, and Natalie M. Paquette. “Landau-Ginzburg Orbifolds and Symmetries of K3 CFTs.” arXiv:1512.04942 [hep-Th], December 15, 2015. http://arxiv.org/abs/1512.04942.
 - Cheng, Miranda C. N., Sarah M. Harrison, Shamit Kachru, and Daniel Whalen. ‘Exceptional Algebra and Sporadic Groups at c=12’. arXiv:1503.07219 [hep-Th], 24 March 2015. http://arxiv.org/abs/1503.07219.
 - Duncan, John F. R., Michael J. Griffin, and Ken Ono. ‘Proof of the Umbral Moonshine Conjecture’. arXiv:1503.01472 [math], 4 March 2015. http://arxiv.org/abs/1503.01472.
 - Duncan, John F. R., and Jeffrey A. Harvey. “The Umbral Moonshine Module for the Unique Unimodular Niemeier Root System.” arXiv:1412.8191 [hep-Th], December 28, 2014. http://arxiv.org/abs/1412.8191.
 - Harvey, Jeffrey A., Sameer Murthy, and Caner Nazaroglu. “ADE Double Scaled Little String Theories, Mock Modular Forms and Umbral Moonshine.” arXiv:1410.6174 [hep-Th], October 22, 2014. http://arxiv.org/abs/1410.6174.
 - Cheng, Miranda C. N., and Sarah Harrison. “Umbral Moonshine and K3 Surfaces.” arXiv:1406.0619 [hep-Th], June 3, 2014. http://arxiv.org/abs/1406.0619.
 - Cheng, Miranda C. N., John F. R. Duncan, and Jeffrey A. Harvey. 2012. “Umbral Moonshine”. ArXiv e-print 1204.2779. http://arxiv.org/abs/1204.2779.
 
메타데이터
위키데이터
- ID : Q7881385
 
Spacy 패턴 목록
- [{'LOWER': 'umbral'}, {'LEMMA': 'moonshine'}]