"Linking number"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
(새 문서: ==linking number and HOMFLY polynomial== * Let $L$ be a link. * $P_L$ denote the HOMFLY polynomial * recall that $P_L(a,z)\in \mathbb[a^{\pm 1}, z^{\pm 1}]$ satisfies the skein relat...)
 
 
(사용자 2명의 중간 판 6개는 보이지 않습니다)
1번째 줄: 1번째 줄:
 
==linking number and HOMFLY polynomial==
 
==linking number and HOMFLY polynomial==
* Let $L$ be a link.  
+
* Let <math>L</math> be a link.  
* $P_L$ denote the HOMFLY polynomial
+
* <math>P_L</math> denote the HOMFLY polynomial
* recall that $P_L(a,z)\in \mathbb[a^{\pm 1}, z^{\pm 1}]$ satisfies the skein relation
+
* recall that <math>P_L(a,z)\in \mathbb[a^{\pm 1}, z^{\pm 1}]</math> satisfies the skein relation
 
:<math>
 
:<math>
 
aP_{L_{+}} - a^{-1}P_{L_{-}}=zP_{L_0}
 
aP_{L_{+}} - a^{-1}P_{L_{-}}=zP_{L_0}
 
</math>
 
</math>
 
and
 
and
$$
+
:<math>
 
P_{n-unlink}=\left(\frac{a-a^{-1}}{z}\right)^{n-1}
 
P_{n-unlink}=\left(\frac{a-a^{-1}}{z}\right)^{n-1}
$$
+
</math>
  
  
 
;thm (Sikora)
 
;thm (Sikora)
For any link $L$ of $n$ components the limit
+
For any link <math>L</math> of <math>n</math> components the limit
$$
+
:<math>
 
Q_L(q) : = \lim_{v\to 1} \left(\frac{q}{a-a^{-1}}\right)^{\frac{n-1}{2}}P_L(a,\sqrt{q(a-a^{-1})})
 
Q_L(q) : = \lim_{v\to 1} \left(\frac{q}{a-a^{-1}}\right)^{\frac{n-1}{2}}P_L(a,\sqrt{q(a-a^{-1})})
$$
+
</math>
 
exists.
 
exists.
  
$Q_L(q)$ is a polynomial in $q$ and $Q_L(q)=\sum c_i(L)q^i$
+
<math>Q_L(q)</math> is a polynomial in <math>q</math> and <math>Q_L(q)=\sum c_i(L)q^i</math>
 +
 
 +
 
 +
* Birman
 +
** two 3-braids whose closures have the same Homfly-pt polynomial but different linking numbers between their components
 +
** pair of links with the same HOMFLYPT polynomial but different linking matrix
 +
 
 +
==related items==
 +
* [[HOMFLY polynomial]]
 +
 
 +
 
 +
==expositions==
 +
* [http://www.math.buffalo.edu/~asikora/Papers/lk.pdf Sikora, Note on the Homfly-pt polynomial and linking numbers]
 +
 
 +
[[분류:Knot theory]]
 +
[[분류:migrate]]
 +
 
 +
==메타데이터==
 +
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q2000614 Q2000614]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'linking'}, {'LEMMA': 'number'}]

2021년 2월 17일 (수) 02:04 기준 최신판

linking number and HOMFLY polynomial

  • Let \(L\) be a link.
  • \(P_L\) denote the HOMFLY polynomial
  • recall that \(P_L(a,z)\in \mathbb[a^{\pm 1}, z^{\pm 1}]\) satisfies the skein relation

\[ aP_{L_{+}} - a^{-1}P_{L_{-}}=zP_{L_0} \] and \[ P_{n-unlink}=\left(\frac{a-a^{-1}}{z}\right)^{n-1} \]


thm (Sikora)

For any link \(L\) of \(n\) components the limit \[ Q_L(q) : = \lim_{v\to 1} \left(\frac{q}{a-a^{-1}}\right)^{\frac{n-1}{2}}P_L(a,\sqrt{q(a-a^{-1})}) \] exists.

\(Q_L(q)\) is a polynomial in \(q\) and \(Q_L(q)=\sum c_i(L)q^i\)


  • Birman
    • two 3-braids whose closures have the same Homfly-pt polynomial but different linking numbers between their components
    • pair of links with the same HOMFLYPT polynomial but different linking matrix

related items


expositions

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'linking'}, {'LEMMA': 'number'}]