"Linking number"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
Pythagoras0 (토론 | 기여) |
||
(사용자 2명의 중간 판 5개는 보이지 않습니다) | |||
1번째 줄: | 1번째 줄: | ||
==linking number and HOMFLY polynomial== | ==linking number and HOMFLY polynomial== | ||
− | * Let | + | * Let <math>L</math> be a link. |
− | * | + | * <math>P_L</math> denote the HOMFLY polynomial |
− | * recall that | + | * recall that <math>P_L(a,z)\in \mathbb[a^{\pm 1}, z^{\pm 1}]</math> satisfies the skein relation |
:<math> | :<math> | ||
aP_{L_{+}} - a^{-1}P_{L_{-}}=zP_{L_0} | aP_{L_{+}} - a^{-1}P_{L_{-}}=zP_{L_0} | ||
</math> | </math> | ||
and | and | ||
− | + | :<math> | |
P_{n-unlink}=\left(\frac{a-a^{-1}}{z}\right)^{n-1} | P_{n-unlink}=\left(\frac{a-a^{-1}}{z}\right)^{n-1} | ||
− | + | </math> | |
;thm (Sikora) | ;thm (Sikora) | ||
− | For any link | + | For any link <math>L</math> of <math>n</math> components the limit |
− | + | :<math> | |
Q_L(q) : = \lim_{v\to 1} \left(\frac{q}{a-a^{-1}}\right)^{\frac{n-1}{2}}P_L(a,\sqrt{q(a-a^{-1})}) | Q_L(q) : = \lim_{v\to 1} \left(\frac{q}{a-a^{-1}}\right)^{\frac{n-1}{2}}P_L(a,\sqrt{q(a-a^{-1})}) | ||
− | + | </math> | |
exists. | exists. | ||
− | + | <math>Q_L(q)</math> is a polynomial in <math>q</math> and <math>Q_L(q)=\sum c_i(L)q^i</math> | |
+ | |||
+ | * Birman | ||
+ | ** two 3-braids whose closures have the same Homfly-pt polynomial but different linking numbers between their components | ||
+ | ** pair of links with the same HOMFLYPT polynomial but different linking matrix | ||
==related items== | ==related items== | ||
28번째 줄: | 32번째 줄: | ||
==expositions== | ==expositions== | ||
* [http://www.math.buffalo.edu/~asikora/Papers/lk.pdf Sikora, Note on the Homfly-pt polynomial and linking numbers] | * [http://www.math.buffalo.edu/~asikora/Papers/lk.pdf Sikora, Note on the Homfly-pt polynomial and linking numbers] | ||
+ | |||
+ | [[분류:Knot theory]] | ||
+ | [[분류:migrate]] | ||
+ | |||
+ | ==메타데이터== | ||
+ | ===위키데이터=== | ||
+ | * ID : [https://www.wikidata.org/wiki/Q2000614 Q2000614] | ||
+ | ===Spacy 패턴 목록=== | ||
+ | * [{'LOWER': 'linking'}, {'LEMMA': 'number'}] |
2021년 2월 17일 (수) 02:04 기준 최신판
linking number and HOMFLY polynomial
- Let \(L\) be a link.
- \(P_L\) denote the HOMFLY polynomial
- recall that \(P_L(a,z)\in \mathbb[a^{\pm 1}, z^{\pm 1}]\) satisfies the skein relation
\[ aP_{L_{+}} - a^{-1}P_{L_{-}}=zP_{L_0} \] and \[ P_{n-unlink}=\left(\frac{a-a^{-1}}{z}\right)^{n-1} \]
- thm (Sikora)
For any link \(L\) of \(n\) components the limit \[ Q_L(q) : = \lim_{v\to 1} \left(\frac{q}{a-a^{-1}}\right)^{\frac{n-1}{2}}P_L(a,\sqrt{q(a-a^{-1})}) \] exists.
\(Q_L(q)\) is a polynomial in \(q\) and \(Q_L(q)=\sum c_i(L)q^i\)
- Birman
- two 3-braids whose closures have the same Homfly-pt polynomial but different linking numbers between their components
- pair of links with the same HOMFLYPT polynomial but different linking matrix
expositions
메타데이터
위키데이터
- ID : Q2000614
Spacy 패턴 목록
- [{'LOWER': 'linking'}, {'LEMMA': 'number'}]