"Linking number"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) |
Pythagoras0 (토론 | 기여) |
||
(같은 사용자의 중간 판 하나는 보이지 않습니다) | |||
35번째 줄: | 35번째 줄: | ||
[[분류:Knot theory]] | [[분류:Knot theory]] | ||
[[분류:migrate]] | [[분류:migrate]] | ||
+ | |||
+ | ==메타데이터== | ||
+ | ===위키데이터=== | ||
+ | * ID : [https://www.wikidata.org/wiki/Q2000614 Q2000614] | ||
+ | ===Spacy 패턴 목록=== | ||
+ | * [{'LOWER': 'linking'}, {'LEMMA': 'number'}] |
2021년 2월 17일 (수) 02:04 기준 최신판
linking number and HOMFLY polynomial
- Let \(L\) be a link.
- \(P_L\) denote the HOMFLY polynomial
- recall that \(P_L(a,z)\in \mathbb[a^{\pm 1}, z^{\pm 1}]\) satisfies the skein relation
\[ aP_{L_{+}} - a^{-1}P_{L_{-}}=zP_{L_0} \] and \[ P_{n-unlink}=\left(\frac{a-a^{-1}}{z}\right)^{n-1} \]
- thm (Sikora)
For any link \(L\) of \(n\) components the limit \[ Q_L(q) : = \lim_{v\to 1} \left(\frac{q}{a-a^{-1}}\right)^{\frac{n-1}{2}}P_L(a,\sqrt{q(a-a^{-1})}) \] exists.
\(Q_L(q)\) is a polynomial in \(q\) and \(Q_L(q)=\sum c_i(L)q^i\)
- Birman
- two 3-braids whose closures have the same Homfly-pt polynomial but different linking numbers between their components
- pair of links with the same HOMFLYPT polynomial but different linking matrix
expositions
메타데이터
위키데이터
- ID : Q2000614
Spacy 패턴 목록
- [{'LOWER': 'linking'}, {'LEMMA': 'number'}]