"Quantum dilogarithm"의 두 판 사이의 차이
		
		
		
		
		
		둘러보기로 가기
		검색하러 가기
		
				
		
		
	
Pythagoras0 (토론 | 기여)   | 
				|||
| (사용자 2명의 중간 판 22개는 보이지 않습니다) | |||
| 1번째 줄: | 1번째 줄: | ||
| − | + | ==introduction==  | |
| − | *   | + | * {{수학노트|url=양자_다이로그_함수(quantum_dilogarithm)}}  | 
| + | * {{수학노트|url=양자_다이로그_항등식_(quantum_dilogarithm_identities)}}  | ||
| + | * http://arxiv.org/abs/hep-th/9611117   | ||
| − | |||
| − | + | ==Knot and invariants from quantum dilogarithm==  | |
| − | + | * '''[Kashaev1995] '''  | |
| + | *  a link invariant, depending on a positive integer parameter N, has been defined via three-dimensional interpretation of the cyclic quantum dilogarithm  | ||
| + | *  The construction can be considered as an example of the simplicial (combinatorial) version of the three-dimensional TQFT  | ||
| + | *  this invariant is in fact a quantum generalization of the hyperbolic volume invariant.  | ||
| + | *  It is possible that the simplicialTQFT, defined in terms of the cyclic quantum dilogarithm, can be associated with quantum 2 + 1-dimensional gravity.  | ||
| − | *   | + | * '''[Kashaev1995]'''[http://dx.doi.org/10.1142/S0217732395001526 A link invariant from quantum dilogarithm]  | 
| + | ** Kashaev, R. M., Modern Phys. Lett. A 10 (1995), 1409–1418  | ||
| − | |||
| − | + | ==Teschner's version==  | |
| + | * <math>b\in \R_{>0}</math>  | ||
| + | * <math>G_b(z)</math>  | ||
| + | * <math>G_b(z+Q)=G_b(z)(1-e^{2\pi ib z})(1-e^{2\pi ib^{-1}z})</math>, where <math>Q=b+b^{-1}</math>  | ||
| − | |||
| − | + | ==related items==  | |
| + | * [[Manufacturing matrices from lower ranks]]  | ||
| + | * [[Fermionic summation formula]]  | ||
| + | * [[asymptotic analysis of basic hypergeometric series]]  | ||
| + | * [[Kashaev's volume conjecture]]  | ||
| − | |||
| − | + | ==computational resource==  | |
| + | * https://drive.google.com/file/d/0B8XXo8Tve1cxQ09YeHM2ellGS1U/view  | ||
| + | * http://math-www.uni-paderborn.de/~axel/graphs/  | ||
| − | |||
| − | + | [[분류:개인노트]]  | |
| − | + | [[분류:Number theory and physics]]  | |
| − | + | [[분류:dilogarithm]]  | |
| − | + | [[분류:migrate]]  | |
| − | |||
| − | *   | + | ==메타데이터==  | 
| − | + | ===위키데이터===  | |
| − | + | * ID :  [https://www.wikidata.org/wiki/Q7269036 Q7269036]  | |
| − | + | ===Spacy 패턴 목록===  | |
| − | + | * [{'LOWER': 'quantum'}, {'LEMMA': 'dilogarithm'}]  | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | * [  | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
2021년 2월 17일 (수) 02:08 기준 최신판
introduction
Knot and invariants from quantum dilogarithm
- [Kashaev1995]
 - a link invariant, depending on a positive integer parameter N, has been defined via three-dimensional interpretation of the cyclic quantum dilogarithm
 - The construction can be considered as an example of the simplicial (combinatorial) version of the three-dimensional TQFT
 - this invariant is in fact a quantum generalization of the hyperbolic volume invariant.
 - It is possible that the simplicialTQFT, defined in terms of the cyclic quantum dilogarithm, can be associated with quantum 2 + 1-dimensional gravity.
 
- [Kashaev1995]A link invariant from quantum dilogarithm
- Kashaev, R. M., Modern Phys. Lett. A 10 (1995), 1409–1418
 
 
Teschner's version
- \(b\in \R_{>0}\)
 - \(G_b(z)\)
 - \(G_b(z+Q)=G_b(z)(1-e^{2\pi ib z})(1-e^{2\pi ib^{-1}z})\), where \(Q=b+b^{-1}\)
 
- Manufacturing matrices from lower ranks
 - Fermionic summation formula
 - asymptotic analysis of basic hypergeometric series
 - Kashaev's volume conjecture
 
computational resource
- https://drive.google.com/file/d/0B8XXo8Tve1cxQ09YeHM2ellGS1U/view
 - http://math-www.uni-paderborn.de/~axel/graphs/
 
메타데이터
위키데이터
- ID : Q7269036
 
Spacy 패턴 목록
- [{'LOWER': 'quantum'}, {'LEMMA': 'dilogarithm'}]