"K-theory"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
Pythagoras0 (토론 | 기여) |
||
(사용자 2명의 중간 판 15개는 보이지 않습니다) | |||
1번째 줄: | 1번째 줄: | ||
==introduction== | ==introduction== | ||
− | + | ||
− | + | ||
+ | ==major results== | ||
+ | * Norm residue isomorphism theorem | ||
+ | ** isomorphism from Milnor K-theory mod l to étale cohomology | ||
+ | ** motivic Bloch–Kato conjecture | ||
+ | ** generalization of the Milnor conjecture | ||
+ | ** consequence : Quillen–Lichtenbaum conjecture | ||
+ | |||
− | + | ==number fields== | |
+ | * [[K-theory of number fields and Borel's regulator]] | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
==related items== | ==related items== | ||
* [[topology and vector bundles]] | * [[topology and vector bundles]] | ||
− | + | * [[K-theory of curves]] | |
− | + | ||
− | |||
− | |||
− | |||
− | * [ | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
==encyclopedia== | ==encyclopedia== | ||
+ | * http://en.wikipedia.org/wiki/Algebraic_K-theory | ||
+ | * http://en.wikipedia.org/wiki/K-theory | ||
− | |||
− | |||
− | |||
− | |||
− | + | ==books== | |
+ | * Charles Weibel, [http://www.math.rutgers.edu/~weibel/Kbook.html The K-book: An introduction to algebraic K-theory] | ||
+ | * [http://books.google.co.kr/books?id=5AGmJFc6jncC Algebra, K-theory, groups, and education] | ||
− | |||
− | |||
− | * [http://www.jstor.org/stable/2318406 an introduction to algebraic K-theory] | + | ==expositions== |
+ | * CHRISTOPHE SOULE, [http://www.ihes.fr/~soule/soulehangzhou.pdf HIGHER K-THEORY OF ALGEBRAIC INTEGERS AND THE COHOMOLOGY OF ARITHMETIC GROUPS] | ||
+ | * Arlettaz, D. 2000. “Algebraic <math>K</math>-theory of rings from a topological viewpoint.” Publicacions Matemàtiques 44 (1) (January 11): 3–84. | ||
+ | * [http://www.jstor.org/stable/2318406 an introduction to algebraic K-theory] | ||
** T. Y. Lam and M. K. Siu, The American Mathematical Monthly, Vol. 82, No. 4 (Apr., 1975), pp. 329-364 | ** T. Y. Lam and M. K. Siu, The American Mathematical Monthly, Vol. 82, No. 4 (Apr., 1975), pp. 329-364 | ||
− | * [http://www.claymath.org/programs/outreach/academy/LectureNotes05/Karoubipaper.pdf K-THEORY. An elementary introduction] | + | * [http://www.claymath.org/programs/outreach/academy/LectureNotes05/Karoubipaper.pdf K-THEORY. An elementary introduction] |
** Max Karoubi. Conference at the Clay Mathematics Research Academy | ** Max Karoubi. Conference at the Clay Mathematics Research Academy | ||
− | * [http://www.math.uiuc.edu/K-theory/0343/khistory.pdf The development of Algebraic K-theory before 1980] | + | * [http://www.math.uiuc.edu/K-theory/0343/khistory.pdf The development of Algebraic K-theory before 1980] |
** Charles A. Weibel | ** Charles A. Weibel | ||
* [http://math.berkeley.edu/%7Ehutching/teach/215b-2004/courtney.pdf A brief glance at K-theory] | * [http://math.berkeley.edu/%7Ehutching/teach/215b-2004/courtney.pdf A brief glance at K-theory] | ||
− | * [http://www.spencerstirling.com/papers/ktheory.pdf ] | + | * [http://www.spencerstirling.com/papers/ktheory.pdf A BRIEF GUIDE TO ORDINARY K-THEORY] |
− | + | ||
− | + | ||
− | + | ==questions== | |
+ | * http://mathoverflow.net/questions/364/motivation-for-algebraic-k-theory | ||
− | |||
− | |||
[[분류:개인노트]] | [[분류:개인노트]] | ||
[[분류:math and physics]] | [[분류:math and physics]] | ||
− | [[분류:math | + | [[분류:math]] |
+ | [[분류:K-theory]] | ||
+ | [[분류:migrate]] | ||
+ | |||
+ | ==메타데이터== | ||
+ | ===위키데이터=== | ||
+ | * ID : [https://www.wikidata.org/wiki/Q2553675 Q2553675] | ||
+ | ===Spacy 패턴 목록=== | ||
+ | * [{'LOWER': 'algebraic'}, {'LOWER': 'k'}, {'OP': '*'}, {'LEMMA': 'theory'}] |
2021년 2월 17일 (수) 02:09 기준 최신판
introduction
major results
- Norm residue isomorphism theorem
- isomorphism from Milnor K-theory mod l to étale cohomology
- motivic Bloch–Kato conjecture
- generalization of the Milnor conjecture
- consequence : Quillen–Lichtenbaum conjecture
number fields
encyclopedia
books
- Charles Weibel, The K-book: An introduction to algebraic K-theory
- Algebra, K-theory, groups, and education
expositions
- CHRISTOPHE SOULE, HIGHER K-THEORY OF ALGEBRAIC INTEGERS AND THE COHOMOLOGY OF ARITHMETIC GROUPS
- Arlettaz, D. 2000. “Algebraic \(K\)-theory of rings from a topological viewpoint.” Publicacions Matemàtiques 44 (1) (January 11): 3–84.
- an introduction to algebraic K-theory
- T. Y. Lam and M. K. Siu, The American Mathematical Monthly, Vol. 82, No. 4 (Apr., 1975), pp. 329-364
- K-THEORY. An elementary introduction
- Max Karoubi. Conference at the Clay Mathematics Research Academy
- The development of Algebraic K-theory before 1980
- Charles A. Weibel
- A brief glance at K-theory
- A BRIEF GUIDE TO ORDINARY K-THEORY
questions
메타데이터
위키데이터
- ID : Q2553675
Spacy 패턴 목록
- [{'LOWER': 'algebraic'}, {'LOWER': 'k'}, {'OP': '*'}, {'LEMMA': 'theory'}]