"T-duality"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로)
 
(사용자 2명의 중간 판 15개는 보이지 않습니다)
1번째 줄: 1번째 줄:
 
==introduction==
 
==introduction==
 
+
* the T stands for toroidal
* This refers to the situation where one string theory compactified on a circle of radius R, and another string theory compactified on circle of radius 1/R describe the same physics. Therefore when one of the theories is on a very small circle the other theory is on a very large circle.[http://en.wikipedia.org/wiki/T-duality ]
+
* This refers to the situation where one string theory compactified on a circle of radius R, and another string theory compactified on circle of radius 1/R describe the same physics. Therefore when one of the theories is on a very small circle the other theory is on a very large circle.  
 
* <math>\int \partial X \bar{\partial}X</math>
 
* <math>\int \partial X \bar{\partial}X</math>
 
* <math>X=X+2\pi R</math>
 
* <math>X=X+2\pi R</math>
* T-duality<br><math>\tilde{R}=\frac{\alpha'}{R}</math><br>
+
* T-duality
 
+
:<math>\tilde{R}=\frac{\alpha'}{R}</math>
 
+
* http://iopscience.iop.org/1742-5468/2006/12/P12016/fulltext#SECTIONREF
 
+
* http://www.sciencedirect.com/science/article/pii/0370269389910605
 
+
* T - duality of two-dimensional quantum gravity
 
+
http://iopscience.iop.org/1742-5468/2006/12/P12016/fulltext#SECTIONREF
 
 
 
http://www.sciencedirect.com/science/article/pii/0370269389910605
 
 
 
 
 
 
 
 
 
 
 
==history==
 
 
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
 
 
 
 
 
 
 
 
  
 
==related items==
 
==related items==
30번째 줄: 15번째 줄:
 
* [[c=1 representations]]
 
* [[c=1 representations]]
  
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">encyclopedia==
+
==encyclopedia==
  
 
* http://en.wikipedia.org/wiki/T-duality
 
* http://en.wikipedia.org/wiki/T-duality
* http://www.scholarpedia.org/
 
* [http://eom.springer.de/ http://eom.springer.de]
 
* http://www.proofwiki.org/wiki/
 
* Princeton companion to mathematics([[2910610/attachments/2250873|Companion_to_Mathematics.pdf]])
 
 
 
 
 
 
 
 
==books==
 
 
 
 
 
* [[2011년 books and articles]]
 
* http://library.nu/search?q=
 
* http://library.nu/search?q=
 
 
 
 
 
 
 
 
==expositions==
 
 
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles==
 
 
 
 
 
* http://www.ams.org/mathscinet
 
* http://www.zentralblatt-math.org/zmath/en/
 
* http://arxiv.org/
 
* http://www.pdf-search.org/
 
* http://pythagoras0.springnote.com/
 
* [http://math.berkeley.edu/%7Ereb/papers/index.html http://math.berkeley.edu/~reb/papers/index.html]
 
* http://dx.doi.org/
 
 
 
 
 
 
 
 
==question and answers(Math Overflow)==
 
 
* http://mathoverflow.net/search?q=
 
* http://math.stackexchange.com/search?q=
 
* http://physics.stackexchange.com/search?q=
 
 
 
 
 
 
 
 
 
 
 
==blogs==
 
 
*  구글 블로그 검색<br>
 
**  http://blogsearch.google.com/blogsearch?q=<br>
 
** http://blogsearch.google.com/blogsearch?q=
 
* http://ncatlab.org/nlab/show/HomePage
 
 
 
 
 
 
 
  
==experts on the field==
 
  
* http://arxiv.org/
+
==articles==
 +
* Luu, Martin. ‘Local Langlands Duality and a Duality of Conformal Field Theories’. arXiv:1506.00663 [hep-Th, Physics:math-Ph], 1 June 2015. http://arxiv.org/abs/1506.00663.
 +
* Mathai, Varghese, and Guo Chuan Thiang. ‘T-Duality and Topological Insulators’. arXiv:1503.01206 [hep-Th, Physics:math-Ph], 3 March 2015. http://arxiv.org/abs/1503.01206.
  
 
 
  
 
 
  
==links==
+
[[분류:개인노트]]
 +
[[분류:duality]]
 +
[[분류:migrate]]
  
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]
+
==메타데이터==
* [http://pythagoras0.springnote.com/pages/1947378 수식표현 안내]
+
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q1366191 Q1366191]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 't'}, {'OP': '*'}, {'LEMMA': 'duality'}]

2021년 2월 17일 (수) 02:10 기준 최신판

introduction

  • the T stands for toroidal
  • This refers to the situation where one string theory compactified on a circle of radius R, and another string theory compactified on circle of radius 1/R describe the same physics. Therefore when one of the theories is on a very small circle the other theory is on a very large circle.
  • \(\int \partial X \bar{\partial}X\)
  • \(X=X+2\pi R\)
  • T-duality

\[\tilde{R}=\frac{\alpha'}{R}\]


related items


encyclopedia


articles

  • Luu, Martin. ‘Local Langlands Duality and a Duality of Conformal Field Theories’. arXiv:1506.00663 [hep-Th, Physics:math-Ph], 1 June 2015. http://arxiv.org/abs/1506.00663.
  • Mathai, Varghese, and Guo Chuan Thiang. ‘T-Duality and Topological Insulators’. arXiv:1503.01206 [hep-Th, Physics:math-Ph], 3 March 2015. http://arxiv.org/abs/1503.01206.

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 't'}, {'OP': '*'}, {'LEMMA': 'duality'}]