"Heisenberg group and Heisenberg algebra"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
 
(사용자 2명의 중간 판 11개는 보이지 않습니다)
1번째 줄: 1번째 줄:
 +
==introduction==
 +
* [http://www.math.cornell.edu/People/Faculty/Heisen.pdf AUTOMORPHISMS OF THE DISCRETE HEISENBERG GROUP]
 +
 +
 
==relation to quantum mechanics==
 
==relation to quantum mechanics==
  
*  the position operators and momentum operators satisfy the relation<br><math>[X,P] = X P - P X = i \hbar</math><br>
+
*   the position operators and momentum operators satisfy the relation<math>[X,P] = X P - P X = i \hbar</math>
  
 
+
  
 
+
  
 
==relation to Weyl algebra==
 
==relation to Weyl algebra==
11번째 줄: 15번째 줄:
 
* a quotient of the universal enveloping algebra of the Heisenberg algebra
 
* a quotient of the universal enveloping algebra of the Heisenberg algebra
  
 
+
  
 
+
  
 
==finite dimensional Heisenberg algebra==
 
==finite dimensional Heisenberg algebra==
  
*  one dimensional [[central extension of groups and Lie algebras|central extension]] of abelian Lie algebra<br>
+
*  one dimensional [[central extension of groups and Lie algebras|central extension]] of abelian Lie algebra
 +
* <math>[p_i, q_j] = \delta_{ij}z</math>
 +
* <math>[p_i, z] = 0</math>
 +
* <math>[q_j, z] = 0</math>
 +
*  Gannon 180p
  
* <math>[p_i, q_j] = \delta_{ij}z</math><br>
+
   
* <math>[p_i, z] = 0</math><br>
 
* <math>[q_j, z] = 0</math><br>
 
* Gannon 180p<br>
 
  
 
+
 
 
 
 
  
 
==differential operators==
 
==differential operators==
  
*  commutation relation<br><math>x</math>, <math>p=\frac{d}{dx}</math><br><math>[x,p]=1</math><br>
+
*  commutation relation<math>x</math>, <math>p=\frac{d}{dx}</math><math>[x,p]=1</math>
  
 
+
  
 
+
  
 
==infinite dimensional Heisenberg algebra==
 
==infinite dimensional Heisenberg algebra==
  
*  start with a Lattice <math>\langle\cdot,\cdot\rangle</math><br>
+
*  start with a Lattice <math>\langle\cdot,\cdot\rangle</math>
*  make a vector space from it<br>
+
*  make a vector space from it
*  Construct a Loop algbera<br><math>\hat{A}=A\otimes\mathbb{C}[t,t^{-1}]\oplus\mathbb{C}c</math><br><math>\alpha(m)=\alpha\otimes t^m</math><br>
+
*  Construct a Loop algbera<math>\hat{A}=A\otimes\mathbb{C}[t,t^{-1}]\oplus\mathbb{C}c</math><math>\alpha(m)=\alpha\otimes t^m</math>
*  Give a bracket <br><math>[\alpha(m),\beta(n)]=m\delta_{m,-n}\langle\alpha,\beta\rangle c</math><br>
+
*  Give a bracket <math>[\alpha(m),\beta(n)]=m\delta_{m,-n}\langle\alpha,\beta\rangle c</math>
*  add a derivation <math>d</math><br><math>d(\alpha(n))=n\alpha(n)</math><br><math>d(c)=0</math><br>
+
*  add a derivation <math>d</math><math>d(\alpha(n))=n\alpha(n)</math><math>d(c)=0</math>
*  define a Lie bracket<br><math>[d,x]=d(x)</math><br>
+
*  define a Lie bracket<math>[d,x]=d(x)</math>
In [[affine Kac-Moody algebra]] theory, this appears as the loop algebra of Cartan subalgebra<br>
+
In [[affine Kac-Moody algebra]] theory, this appears as the loop algebra of Cartan subalgebra
*  commutator subalgebra<br>
+
*  commutator subalgebra
*  The automorphisms of the Heisenberg group (fixing its center) form the symplectic group<br>
+
*  The automorphisms of the Heisenberg group (fixing its center) form the symplectic group
  
 
+
  
 
+
  
 
==highest weight module==
 
==highest weight module==
  
* <math>\hat{A}^{+}=A\otimes\mathbb{C}[t]\oplus\mathbb{C}c</math><br>
+
* <math>\hat{A}^{+}=A\otimes\mathbb{C}[t]\oplus\mathbb{C}c</math>
* <math>c.v_{h}=v_{h}</math><br>
+
* <math>c.v_{h}=v_{h}</math>
*  for <math>m>0</math>, <math>\alpha(m)v_{h}=0</math><br>
+
*  for <math>m>0</math>, <math>\alpha(m)v_{h}=0</math>
* <math>\alpha(0)v_{h}=hv_{h}</math><br>
+
* <math>\alpha(0)v_{h}=hv_{h}</math>
  
 
+
  
 
==Stone-Von Neumann theorem==
 
==Stone-Von Neumann theorem==
  
* The [[Heisenberg group and Heisenberg algebra|Heisenberg group]] has an essentially unique irreducible unitary representation on a Hilbert space H with the center acting as a given nonzero constant (the content of the Stone-von Neumann theorem).
+
* The [[Heisenberg group and Heisenberg algebra|Heisenberg group]] has an essentially unique irreducible unitary representation on a Hilbert space H with the center acting as a given nonzero constant (the content of the Stone-von Neumann theorem).
  
 
+
  
 
+
  
 
==Heisenberg VOA==
 
==Heisenberg VOA==
  
* [[VOA associated to Heisenberg algebra]]<br>
+
* [[VOA associated to Heisenberg algebra]]
  
 
+
  
 
+
  
 
==related items==
 
==related items==
  
* [[half-integral weight modular forms|half-integral modular forms]]<br>
+
* [[half-integral weight modular forms|half-integral modular forms]]
* [[Kac-Moody algebras]]<br>
+
* [[Kac-Moody algebras]]
* [[central extension of groups and Lie algebras|central extension of semisimple lie algebra]]<br>
+
* [[central extension of groups and Lie algebras|central extension of semisimple lie algebra]]
* [[Weyl algebra]]<br>
+
* [[Weyl algebra]]
  
 
+
  
 
+
  
 
==books==
 
==books==
 +
* Michael Eugene Taylor [http://books.google.de/books?id=8y11t3mhLO8C Noncommutative Harmonic Analysis]
  
* [[2009년 books and articles|찾아볼 수학책]]
+
* http://gigapedia.info/1/
 
* http://gigapedia.info/1/
 
* http://gigapedia.info/1/
 
* http://gigapedia.info/1/
 
* http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
 
 
 
 
 
 
 
 
 
  
 
==encyclopedia==
 
==encyclopedia==
107번째 줄: 102번째 줄:
 
* http://en.wikipedia.org/wiki/Weyl_algebra
 
* http://en.wikipedia.org/wiki/Weyl_algebra
 
* [http://en.wikipedia.org/wiki/Stone%E2%80%93von_Neumann_theorem http://en.wikipedia.org/wiki/Stone–von_Neumann_theorem]
 
* [http://en.wikipedia.org/wiki/Stone%E2%80%93von_Neumann_theorem http://en.wikipedia.org/wiki/Stone–von_Neumann_theorem]
* http://en.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
 
* Princeton companion to mathematics(첨부파일로 올릴것)
 
  
 
 
  
 
==blogs==
 
==blogs==
 
* [http://www.math.columbia.edu/~woit/wordpress/?p=362 George Mackey 1916-2006]
 
* [http://www.math.columbia.edu/~woit/wordpress/?p=362 George Mackey 1916-2006]
 +
  
 
==expositions==
 
==expositions==
 +
* Müller, Detlef. “Analysis of Invariant PDO’s on the Heisenberg Group.” arXiv:1408.2634 [math], August 12, 2014. http://arxiv.org/abs/1408.2634.
 +
* Kisil [http://www1.maths.leeds.ac.uk/~kisilv/courses/epal021.html Lecture 18  The Heisenberg Group]
 +
* [http://books.google.de/books?hl=en&lr=&id=P2Xe0lFFNO8C&oi=fnd&pg=PA333&dq=related:oJgsodjWPLsJ:scholar.google.com/&ots=SHNcihuGA0&sig=3qtjM71nZBTzBoSfq_6xLNe2FA0#v=onepage&q&f=false On the role of the Heisenberg group in harmonic analysis]
 
* [http://www.ms.unimelb.edu.au/documents/thesis/thesis-Matt-Collins Representations of Heisenberg Groups]
 
* [http://www.ms.unimelb.edu.au/documents/thesis/thesis-Matt-Collins Representations of Heisenberg Groups]
* Stephen Semmes, [http://www.ams.org/notices/200306/fea-semmes.pdf An Introduction to Heisenberg Groups in Analysis and Geometry], June/July  2003  Volume 50  Issue , Notices of AMS
+
* Stephen Semmes, [http://www.ams.org/notices/200306/fea-semmes.pdf An Introduction to Heisenberg Groups in Analysis and Geometry], June/July  2003  Volume 50  Issue 6 , Notices of AMS
 
* [http://www.math.umd.edu/~jmr/StoneVNart.pdf A Selective History of the Stone-von Neumann Theorem]
 
* [http://www.math.umd.edu/~jmr/StoneVNart.pdf A Selective History of the Stone-von Neumann Theorem]
 
 
 
==TeX ==
 
 
 
 
  
 
 
  
*
 
 
[[분류:math and physics]]
 
[[분류:math and physics]]
 
[[분류:Lie theory]]
 
[[분류:Lie theory]]
 +
[[분류:theta]]
 +
[[분류:migrate]]
 +
 +
==메타데이터==
 +
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q1601337 Q1601337]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'heisenberg'}, {'LEMMA': 'group'}]

2021년 2월 17일 (수) 03:13 기준 최신판

introduction


relation to quantum mechanics

  • the position operators and momentum operators satisfy the relation\([X,P] = X P - P X = i \hbar\)



relation to Weyl algebra

  • a quotient of the universal enveloping algebra of the Heisenberg algebra



finite dimensional Heisenberg algebra

  • one dimensional central extension of abelian Lie algebra
  • \([p_i, q_j] = \delta_{ij}z\)
  • \([p_i, z] = 0\)
  • \([q_j, z] = 0\)
  • Gannon 180p



differential operators

  • commutation relation\(x\), \(p=\frac{d}{dx}\)\([x,p]=1\)



infinite dimensional Heisenberg algebra

  • start with a Lattice \(\langle\cdot,\cdot\rangle\)
  • make a vector space from it
  • Construct a Loop algbera\(\hat{A}=A\otimes\mathbb{C}[t,t^{-1}]\oplus\mathbb{C}c\)\(\alpha(m)=\alpha\otimes t^m\)
  • Give a bracket \([\alpha(m),\beta(n)]=m\delta_{m,-n}\langle\alpha,\beta\rangle c\)
  • add a derivation \(d\)\(d(\alpha(n))=n\alpha(n)\)\(d(c)=0\)
  • define a Lie bracket\([d,x]=d(x)\)
  • In affine Kac-Moody algebra theory, this appears as the loop algebra of Cartan subalgebra
  • commutator subalgebra
  • The automorphisms of the Heisenberg group (fixing its center) form the symplectic group



highest weight module

  • \(\hat{A}^{+}=A\otimes\mathbb{C}[t]\oplus\mathbb{C}c\)
  • \(c.v_{h}=v_{h}\)
  • for \(m>0\), \(\alpha(m)v_{h}=0\)
  • \(\alpha(0)v_{h}=hv_{h}\)


Stone-Von Neumann theorem

  • The Heisenberg group has an essentially unique irreducible unitary representation on a Hilbert space H with the center acting as a given nonzero constant (the content of the Stone-von Neumann theorem).



Heisenberg VOA



related items



books


encyclopedia


blogs


expositions

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'heisenberg'}, {'LEMMA': 'group'}]