"Heisenberg group and Heisenberg algebra"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) (→메타데이터: 새 문단) |
Pythagoras0 (토론 | 기여) |
||
122번째 줄: | 122번째 줄: | ||
[[분류:migrate]] | [[분류:migrate]] | ||
− | == 메타데이터 == | + | ==메타데이터== |
− | |||
===위키데이터=== | ===위키데이터=== | ||
* ID : [https://www.wikidata.org/wiki/Q1601337 Q1601337] | * ID : [https://www.wikidata.org/wiki/Q1601337 Q1601337] | ||
+ | ===Spacy 패턴 목록=== | ||
+ | * [{'LOWER': 'heisenberg'}, {'LEMMA': 'group'}] |
2021년 2월 17일 (수) 02:13 기준 최신판
introduction
relation to quantum mechanics
- the position operators and momentum operators satisfy the relation\([X,P] = X P - P X = i \hbar\)
relation to Weyl algebra
- a quotient of the universal enveloping algebra of the Heisenberg algebra
finite dimensional Heisenberg algebra
- one dimensional central extension of abelian Lie algebra
- \([p_i, q_j] = \delta_{ij}z\)
- \([p_i, z] = 0\)
- \([q_j, z] = 0\)
- Gannon 180p
differential operators
- commutation relation\(x\), \(p=\frac{d}{dx}\)\([x,p]=1\)
infinite dimensional Heisenberg algebra
- start with a Lattice \(\langle\cdot,\cdot\rangle\)
- make a vector space from it
- Construct a Loop algbera\(\hat{A}=A\otimes\mathbb{C}[t,t^{-1}]\oplus\mathbb{C}c\)\(\alpha(m)=\alpha\otimes t^m\)
- Give a bracket \([\alpha(m),\beta(n)]=m\delta_{m,-n}\langle\alpha,\beta\rangle c\)
- add a derivation \(d\)\(d(\alpha(n))=n\alpha(n)\)\(d(c)=0\)
- define a Lie bracket\([d,x]=d(x)\)
- In affine Kac-Moody algebra theory, this appears as the loop algebra of Cartan subalgebra
- commutator subalgebra
- The automorphisms of the Heisenberg group (fixing its center) form the symplectic group
highest weight module
- \(\hat{A}^{+}=A\otimes\mathbb{C}[t]\oplus\mathbb{C}c\)
- \(c.v_{h}=v_{h}\)
- for \(m>0\), \(\alpha(m)v_{h}=0\)
- \(\alpha(0)v_{h}=hv_{h}\)
Stone-Von Neumann theorem
- The Heisenberg group has an essentially unique irreducible unitary representation on a Hilbert space H with the center acting as a given nonzero constant (the content of the Stone-von Neumann theorem).
Heisenberg VOA
- half-integral modular forms
- Kac-Moody algebras
- central extension of semisimple lie algebra
- Weyl algebra
books
- Michael Eugene Taylor Noncommutative Harmonic Analysis
encyclopedia
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/Heisenberg_algebra
- http://en.wikipedia.org/wiki/Weyl_algebra
- http://en.wikipedia.org/wiki/Stone–von_Neumann_theorem
blogs
expositions
- Müller, Detlef. “Analysis of Invariant PDO’s on the Heisenberg Group.” arXiv:1408.2634 [math], August 12, 2014. http://arxiv.org/abs/1408.2634.
- Kisil Lecture 18 The Heisenberg Group
- On the role of the Heisenberg group in harmonic analysis
- Representations of Heisenberg Groups
- Stephen Semmes, An Introduction to Heisenberg Groups in Analysis and Geometry, June/July 2003 Volume 50 Issue 6 , Notices of AMS
- A Selective History of the Stone-von Neumann Theorem
메타데이터
위키데이터
- ID : Q1601337
Spacy 패턴 목록
- [{'LOWER': 'heisenberg'}, {'LEMMA': 'group'}]