"Belyi map"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(같은 사용자의 중간 판 3개는 보이지 않습니다)
5번째 줄: 5번째 줄:
 
* Belyi map gives rise to a projective curve
 
* Belyi map gives rise to a projective curve
  
 
+
  
 
+
  
 
==Belyi maps of degree 2==
 
==Belyi maps of degree 2==
13번째 줄: 13번째 줄:
 
* Belyi map <math>f:\mathbb{P}^1\to \mathbb{P}^1</math> defined by <math>z\mapsto z^2</math>
 
* Belyi map <math>f:\mathbb{P}^1\to \mathbb{P}^1</math> defined by <math>z\mapsto z^2</math>
  
 
+
  
 
+
  
 
==Grobner techniques==
 
==Grobner techniques==
22번째 줄: 22번째 줄:
 
* Riemann-Hurwitz formula gives the genus <math>g=1-3+(1+1+2)/2=0</math>
 
* Riemann-Hurwitz formula gives the genus <math>g=1-3+(1+1+2)/2=0</math>
  
 
+
  
 
+
  
 
==complex analytic method==
 
==complex analytic method==
30번째 줄: 30번째 줄:
 
* using modular forms
 
* using modular forms
  
 
+
  
 
+
  
 
==p-adic method==
 
==p-adic method==
  
 
+
  
  
  
 
+
 
 
==history==
 
 
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
 
 
 
 
 
 
 
 
  
 
==related items==
 
==related items==
 
* [[Dessin d'enfant]]
 
* [[Dessin d'enfant]]
 
+
  
 
==expositions==
 
==expositions==
70번째 줄: 62번째 줄:
 
* http://en.wikipedia.org/wiki/Dessin_d%27enfant
 
* http://en.wikipedia.org/wiki/Dessin_d%27enfant
  
 
+
  
  
77번째 줄: 69번째 줄:
 
[[분류:math]]
 
[[분류:math]]
 
[[분류:migrate]]
 
[[분류:migrate]]
 +
 +
==메타데이터==
 +
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q3024615 Q3024615]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'dessin'}, {'LEMMA': "d'enfant"}]

2021년 2월 17일 (수) 03:14 기준 최신판

introduction

  • Belyi's theorem on algebraic curves
    • any non-singular algebraic curve C, defined by algebraic number coefficients, represents a compact Riemann surface which is a ramified covering of the Riemann sphere, ramified at three points \(\{0,1,\infty\}\) only.
  • Belyi map gives rise to a projective curve



Belyi maps of degree 2

  • Belyi map \(f:\mathbb{P}^1\to \mathbb{P}^1\) defined by \(z\mapsto z^2\)



Grobner techniques

  • start with three permutations \((12), (23), (132)\). They generate \(S_3\).
  • Riemann-Hurwitz formula gives the genus \(g=1-3+(1+1+2)/2=0\)



complex analytic method

  • using modular forms



p-adic method

related items


expositions


articles

  • Ayberk Zeytin, Belyi Lattes Maps, arXiv:1011.5644[math.AG], November 25 2010, http://arxiv.org/abs/1011.5644v3
  • Van Hoeij, Mark, and Raimundas Vidunas. “Belyi Functions for Hyperbolic Hypergeometric-to-Heun Transformations.” Physical Review Letters 111, no. 10 (September 2013). doi:10.1103/PhysRevLett.111.107802.
  • Klug, Michael, Michael Musty, Sam Schiavone, and John Voight. 2013. “Numerical Calculation of Three-Point Branched Covers of the Projective Line.” arXiv:1311.2081 [math] (November 8). http://arxiv.org/abs/1311.2081.
  • Köck, Bernhard. “Belyi’s Theorem Revisited.” arXiv:math/0108222, August 31, 2001. http://arxiv.org/abs/math/0108222.

encyclopedia

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'dessin'}, {'LEMMA': "d'enfant"}]