"Self-avoiding walks (SAW)"의 두 판 사이의 차이
imported>Pythagoras0 (→basics) |
Pythagoras0 (토론 | 기여) |
||
(사용자 2명의 중간 판 10개는 보이지 않습니다) | |||
2번째 줄: | 2번째 줄: | ||
* choose edge in a given lattice | * choose edge in a given lattice | ||
* not allowed to retrace your path | * not allowed to retrace your path | ||
− | * how many SAWs of length | + | * how many SAWs of length <math>n</math> are there? |
* simple to define, in some ways really easy to study but we are not close to a closed form formula | * simple to define, in some ways really easy to study but we are not close to a closed form formula | ||
==basics== | ==basics== | ||
;def | ;def | ||
− | A SAW of length | + | A SAW of length <math>n</math> is a map <math>w:\{0,1,\cdots, n\} \to \mathbb{Z}^d</math> such that <math>|w(i+1)-w(i)|=1</math> and <math>w(i)\neq w(j)</math> for <math>i\neq j</math> |
− | * | + | * <math>W_n</math> the set of all SAWs of length <math>n</math> |
− | * | + | * <math>C_n(x)=C_n(0,x)</math> number of SAW starting at 0 and ending at x |
− | * | + | * <math>C_n=\sum_{x\in \mathbb{Z}^d}C_n(x)</math> number of SAW |
− | * | + | * <math>R_e^2(w)=|w(n)-w(0)|^2</math> |
* we have | * we have | ||
− | + | :<math> | |
\begin{align} | \begin{align} | ||
\langle R_e^2 \rangle&=\frac{1}{C_n}\sum_{w\in W_n}R_e^2(w) \\ | \langle R_e^2 \rangle&=\frac{1}{C_n}\sum_{w\in W_n}R_e^2(w) \\ | ||
20번째 줄: | 20번째 줄: | ||
&=\frac{1}{C_n}\sum_{x\in \mathbb{Z}^d}|x|^2C_n(x) | &=\frac{1}{C_n}\sum_{x\in \mathbb{Z}^d}|x|^2C_n(x) | ||
\end{align} | \end{align} | ||
− | + | </math> | |
;conjecture | ;conjecture | ||
We have the following conjecture | We have the following conjecture | ||
− | + | :<math> | |
C_n \sim An^{\gamma-1}\mu^n \label{asymp} | C_n \sim An^{\gamma-1}\mu^n \label{asymp} | ||
− | + | </math> | |
− | + | :<math> | |
C_n(x) \sim Bn^{\alpha-2}\mu^n | C_n(x) \sim Bn^{\alpha-2}\mu^n | ||
− | + | </math> | |
− | + | :<math> | |
\langle R_e^2 \rangle \sim Dn^{2\nu} | \langle R_e^2 \rangle \sim Dn^{2\nu} | ||
− | + | </math> | |
* critical exponent (universal) | * critical exponent (universal) | ||
− | ** | + | ** <math>\alpha</math> specific heat |
− | ** | + | ** <math>\gamma</math> susceptibility |
− | ** | + | ** <math>\nu</math> associated with correlation length |
==models in the universality class== | ==models in the universality class== | ||
* Domb-Joyce : weakly avoiding walk (penalty for intersection) | * Domb-Joyce : weakly avoiding walk (penalty for intersection) | ||
42번째 줄: | 42번째 줄: | ||
==overview of known results== | ==overview of known results== | ||
− | * any solution will not be | + | * any solution will not be <math>D</math>-finite |
===2d=== | ===2d=== | ||
− | * | + | * Coulomb gas (early 1980's) |
* conformal field theory (1980's) | * conformal field theory (1980's) | ||
* SLE (since 1998) | * SLE (since 1998) | ||
56번째 줄: | 56번째 줄: | ||
===asymptotics \ref{asymp}=== | ===asymptotics \ref{asymp}=== | ||
− | * very little hope of showing this in | + | * very little hope of showing this in <math>d=3</math> |
− | * | + | * <math>d\geq 5</math> has been shown that <math>\gamma=1</math> via the lace expansion |
− | * | + | * <math>d=4</math> some things proven via exact renormalization group |
− | * | + | * <math>d=2</math>, nothing yet, chance of a proof via discrete holomophicity |
− | + | ==2d lattice== | |
− | ==SAW on 2d honeycomb lattice== | + | ===SAW on 2d square lattice=== |
+ | * <math>\{c_n\}_{n \geq 0} : 4,12,36,100,\cdots </math> | ||
+ | ===SAW on 2d honeycomb lattice=== | ||
;conjecture | ;conjecture | ||
− | Let | + | Let <math>c_n</math> be the number of SAWs from a fixed starting point on the honeycomb lattice. Then |
− | + | :<math> | |
c_n \sim An^{\gamma-1}\mu^n | c_n \sim An^{\gamma-1}\mu^n | ||
− | + | </math> | |
− | as | + | as <math>n\to \infty</math>, where <math>\mu=\sqrt{2+\sqrt{2}}</math> and <math>\gamma</math> is conjectured to be <math>43/32</math> |
− | * the fact | + | * the fact <math>\mu=\sqrt{2+\sqrt{2}}</math> was conjectured by Nieuhuis in 1982 and proved in 2012 by Smirnov |
− | * the critical exponent | + | * the critical exponent <math>\gamma</math> is universal |
* proof uses discrete holomorphic observables | * proof uses discrete holomorphic observables | ||
− | + | ||
==related items== | ==related items== | ||
77번째 줄: | 79번째 줄: | ||
* [[non-intersecting paths]] | * [[non-intersecting paths]] | ||
− | + | ||
==computational resource== | ==computational resource== | ||
* https://oeis.org/A001411 | * https://oeis.org/A001411 | ||
− | + | ||
87번째 줄: | 89번째 줄: | ||
* Slade, Gordon. “Self-Avoiding Walks.” The Mathematical Intelligencer 16, no. 1 (December 1, 1994): 29–35. doi:10.1007/BF03026612. | * Slade, Gordon. “Self-Avoiding Walks.” The Mathematical Intelligencer 16, no. 1 (December 1, 1994): 29–35. doi:10.1007/BF03026612. | ||
− | + | ||
==articles== | ==articles== | ||
− | * Duminil-Copin, Hugo, and Stanislav Smirnov. “The Connective Constant of the Honeycomb Lattice Equals | + | * Grimmett, Geoffrey R., and Zhongyang Li. “Counting Self-Avoiding Walks.” arXiv:1304.7216 [math-Ph], April 26, 2013. http://arxiv.org/abs/1304.7216. |
+ | * Duminil-Copin, Hugo, and Stanislav Smirnov. “The Connective Constant of the Honeycomb Lattice Equals <math>\sqrt{2+\sqrt2}</math>.” arXiv:1007.0575 [math-Ph], July 4, 2010. http://arxiv.org/abs/1007.0575. | ||
* Lawler, Gregory F., Oded Schramm, and Wendelin Werner. “On the Scaling Limit of Planar Self-Avoiding Walk.” arXiv:math/0204277, April 23, 2002. http://arxiv.org/abs/math/0204277. | * Lawler, Gregory F., Oded Schramm, and Wendelin Werner. “On the Scaling Limit of Planar Self-Avoiding Walk.” arXiv:math/0204277, April 23, 2002. http://arxiv.org/abs/math/0204277. | ||
− | |||
==encyclopedia== | ==encyclopedia== | ||
+ | * http://en.wikipedia.org/wiki/Self-avoiding_walk | ||
* http://en.wikipedia.org/wiki/Connective_constant | * http://en.wikipedia.org/wiki/Connective_constant | ||
− | |||
102번째 줄: | 104번째 줄: | ||
[[분류:integrable systems]] | [[분류:integrable systems]] | ||
[[분류:math and physics]] | [[분류:math and physics]] | ||
+ | [[분류:migrate]] | ||
+ | |||
+ | ==메타데이터== | ||
+ | ===위키데이터=== | ||
+ | * ID : [https://www.wikidata.org/wiki/Q7448025 Q7448025] | ||
+ | ===Spacy 패턴 목록=== | ||
+ | * [{'LOWER': 'self'}, {'OP': '*'}, {'LOWER': 'avoiding'}, {'LEMMA': 'walk'}] | ||
+ | * [{'LEMMA': 'SAW'}] |
2021년 2월 17일 (수) 02:15 기준 최신판
introduction
- choose edge in a given lattice
- not allowed to retrace your path
- how many SAWs of length \(n\) are there?
- simple to define, in some ways really easy to study but we are not close to a closed form formula
basics
- def
A SAW of length \(n\) is a map \(w:\{0,1,\cdots, n\} \to \mathbb{Z}^d\) such that \(|w(i+1)-w(i)|=1\) and \(w(i)\neq w(j)\) for \(i\neq j\)
- \(W_n\) the set of all SAWs of length \(n\)
- \(C_n(x)=C_n(0,x)\) number of SAW starting at 0 and ending at x
- \(C_n=\sum_{x\in \mathbb{Z}^d}C_n(x)\) number of SAW
- \(R_e^2(w)=|w(n)-w(0)|^2\)
- we have
\[ \begin{align} \langle R_e^2 \rangle&=\frac{1}{C_n}\sum_{w\in W_n}R_e^2(w) \\ &=\frac{1}{C_n}\sum_{w\in W_n}|w(n)|^2 \\ &=\frac{1}{C_n}\sum_{x\in \mathbb{Z}^d}\sum_{w:w(n)=x}|x|^2 \\ &=\frac{1}{C_n}\sum_{x\in \mathbb{Z}^d}|x|^2C_n(x) \end{align} \]
- conjecture
We have the following conjecture \[ C_n \sim An^{\gamma-1}\mu^n \label{asymp} \] \[ C_n(x) \sim Bn^{\alpha-2}\mu^n \] \[ \langle R_e^2 \rangle \sim Dn^{2\nu} \]
- critical exponent (universal)
- \(\alpha\) specific heat
- \(\gamma\) susceptibility
- \(\nu\) associated with correlation length
models in the universality class
- Domb-Joyce : weakly avoiding walk (penalty for intersection)
- bead model in the continuum
- polymers
overview of known results
- any solution will not be \(D\)-finite
2d
- Coulomb gas (early 1980's)
- conformal field theory (1980's)
- SLE (since 1998)
3d
- no exact prediction
- numerical method
- renormalization group
- series method
- monte carlo simultation
asymptotics \ref{asymp}
- very little hope of showing this in \(d=3\)
- \(d\geq 5\) has been shown that \(\gamma=1\) via the lace expansion
- \(d=4\) some things proven via exact renormalization group
- \(d=2\), nothing yet, chance of a proof via discrete holomophicity
2d lattice
SAW on 2d square lattice
- \(\{c_n\}_{n \geq 0} : 4,12,36,100,\cdots \)
SAW on 2d honeycomb lattice
- conjecture
Let \(c_n\) be the number of SAWs from a fixed starting point on the honeycomb lattice. Then \[ c_n \sim An^{\gamma-1}\mu^n \] as \(n\to \infty\), where \(\mu=\sqrt{2+\sqrt{2}}\) and \(\gamma\) is conjectured to be \(43/32\)
- the fact \(\mu=\sqrt{2+\sqrt{2}}\) was conjectured by Nieuhuis in 1982 and proved in 2012 by Smirnov
- the critical exponent \(\gamma\) is universal
- proof uses discrete holomorphic observables
computational resource
expositions
- Slade, Gordon. “Self-Avoiding Walks.” The Mathematical Intelligencer 16, no. 1 (December 1, 1994): 29–35. doi:10.1007/BF03026612.
articles
- Grimmett, Geoffrey R., and Zhongyang Li. “Counting Self-Avoiding Walks.” arXiv:1304.7216 [math-Ph], April 26, 2013. http://arxiv.org/abs/1304.7216.
- Duminil-Copin, Hugo, and Stanislav Smirnov. “The Connective Constant of the Honeycomb Lattice Equals \(\sqrt{2+\sqrt2}\).” arXiv:1007.0575 [math-Ph], July 4, 2010. http://arxiv.org/abs/1007.0575.
- Lawler, Gregory F., Oded Schramm, and Wendelin Werner. “On the Scaling Limit of Planar Self-Avoiding Walk.” arXiv:math/0204277, April 23, 2002. http://arxiv.org/abs/math/0204277.
encyclopedia
메타데이터
위키데이터
- ID : Q7448025
Spacy 패턴 목록
- [{'LOWER': 'self'}, {'OP': '*'}, {'LOWER': 'avoiding'}, {'LEMMA': 'walk'}]
- [{'LEMMA': 'SAW'}]