"열역학적 베테 가설 풀이(thermodynamic Bethe ansatz)"의 두 판 사이의 차이
		
		
		
		
		
		둘러보기로 가기
		검색하러 가기
		
				
		
		
	
Pythagoras0 (토론 | 기여)  (새 문서: ==개요== * 산란행렬로부터 바닥상태의 에너지를 비섭동적으로 계산할 수 있는 방법   ==basic notions for particle scattering==  *  infinitely long cylinder...)  | 
				Pythagoras0 (토론 | 기여)   | 
				||
| (같은 사용자의 중간 판 12개는 보이지 않습니다) | |||
| 5번째 줄: | 5번째 줄: | ||
==basic notions for particle scattering==  | ==basic notions for particle scattering==  | ||
| − | *  infinitely long cylinder of radius <math>R</math  | + | *  infinitely long cylinder of radius <math>R</math>  | 
| − | *  N species of particles  | + | *  N species of particles  | 
| − | *  mass of particles <math>m_{a}, a=1,\cdots, N</math  | + | *  mass of particles <math>m_{a}, a=1,\cdots, N</math>  | 
| − | *  rapidity <math>\theta</math> (also called spectral parameter or wave number)  | + | *  rapidity <math>\theta</math> (also called spectral parameter or wave number)  | 
| − | **  a notion from relativity  | + | **  a notion from relativity  | 
| − | ** http://en.wikipedia.org/wiki/Rapidity  | + | ** http://en.wikipedia.org/wiki/Rapidity  | 
| − | *  energy <math>E=m_{a}R\cosh \theta</math  | + | *  energy <math>E=m_{a}R\cosh \theta</math>  | 
| − | *  momentum <math>p=m_{a}R\sinh \theta</math  | + | *  momentum <math>p=m_{a}R\sinh \theta</math>  | 
| − | *  energy-momentum vector <math>p^{\mu}=(E,P)</math  | + | *  energy-momentum vector <math>p^{\mu}=(E,P)</math>  | 
| − | *  S-matrix ([[factorizable scattering theory]])  | + | *  산란행렬 S-matrix ([[factorizable scattering theory]]):<math>S_{ab}(\theta)</math>  | 
| − | *  symmetric matrix kernel   | + | *  symmetric matrix kernel :<math>\phi_{ab}(\theta)=-i\frac{d}{d\theta}\log S_{ab}(\theta)</math>  | 
| − | *  spectral density of particles <math>\epsilon_{a}(\theta)</math  | + | *  spectral density of particles <math>\epsilon_{a}(\theta)</math>  | 
| − | **  also called the pseudoenergy  | + | **  also called the pseudoenergy  | 
| − | *  Y-system <math>Y_{a}(\theta)=e^{-\epsilon_{a}(\theta)}</math> i.e. exponential of spectral density  | + | *  Y-system <math>Y_{a}(\theta)=e^{-\epsilon_{a}(\theta)}</math> i.e. exponential of spectral density  | 
| − | *  ground state energy <math>E(R)</math  | + | *  ground state energy <math>E(R)</math>  | 
| − | *  scaling function <math>c(R)</math> related to the central charge  | + | *  scaling function <math>c(R)</math> related to the central charge  | 
| − | *  TBA equation  | + | *  TBA equation  | 
| − | **  equation to find the spectral density functions <math>\epsilon_{a}(\theta)</math  | + | **  equation to find the spectral density functions <math>\epsilon_{a}(\theta)</math>  | 
| − | *  UV limit  | + | *  UV limit  | 
| − | **  plateau behaviour  | + | **  plateau behaviour  | 
| − | ** <math>\epsilon_{a}(\theta)</math> becomes constant in a large region for <math>\theta</math> when r(inverse temperature) is small  | + | ** <math>\epsilon_{a}(\theta)</math> becomes constant in a large region for <math>\theta</math> when r(inverse temperature) is small  | 
| − | *  IR limit  | + | *  IR limit  | 
| 33번째 줄: | 33번째 줄: | ||
==limit==  | ==limit==  | ||
| − | *  energy <math>E=m_{a}R\cosh \theta</math  | + | *  energy <math>E=m_{a}R\cosh \theta</math>  | 
| − | *  momentum <math>p=m_{a}R\sinh \theta</math  | + | *  momentum <math>p=m_{a}R\sinh \theta</math>  | 
| − | *  in the CFT limit, we regard \theta \to \infty for right movers and -\infty for left movers  | + | *  in the CFT limit, we regard \theta \to \infty for right movers and -\infty for left movers  | 
| − | *  Thus we get, E=p and E=-p respectively in CFT limit  | + | *  Thus we get, E=p and E=-p respectively in CFT limit  | 
| 44번째 줄: | 44번째 줄: | ||
==TBA equation==  | ==TBA equation==  | ||
| − | *  a system which interacts dynamically via the scattering matrix and statistically via Fermi statistics  | + | *  a system which interacts dynamically via the scattering matrix and statistically via Fermi statistics:<math>Rm_{a}^{i}\cosh\theta = \epsilon_{a}^{i}(\theta)+\frac{1}{2\pi}\sum_{b=1}^{l}\sum_{j=1}^{\tilde{l}}\int_{-\infty}^{\infty} d\theta' \phi_{ab}^{ij}(\theta-\theta')\ln (1+e^{-\epsilon_{b}^{j}(\theta')})</math> where <math>R=T^{-1}</math> is the inverse temperature and <math>m_{a}^{i}</math> the mass of particle (a,i)  | 
| + | |||
| + | |||
| + | ==예 : Yang-Lee 모형==  | ||
| + | * 1 particle  | ||
| + | * 산란행렬  | ||
| + | :<math>  | ||
| + | S_{11}(\theta)=\tanh \left(\frac{1}{2} \left(\theta -\frac{2 i \pi }{3}\right)\right) \coth \left(\frac{1}{2} \left(\theta +\frac{2 i \pi }{3}\right)\right)  | ||
| + | </math>  | ||
| + | * 커널  | ||
| + | :<math>  | ||
| + | \phi_{11}(\theta)=-i\frac{d}{d\theta}\log S_{11}(\theta)=\sqrt{3} \left(\frac{1}{2 \cosh (\theta )+1}+\frac{1}{2 \cosh (\theta )-1}\right)  | ||
| + | </math>  | ||
| + | *   | ||
| + | :<math>  | ||
| + | N=\frac{1}{2\pi}\int_{-\infty}^{\infty}\phi_{11}(\theta)=1  | ||
| + | </math>  | ||
| + | |||
| + | |||
| + | |||
| + | ==계산 리소스==  | ||
| + | * http://msstp.org/?q=node/277  | ||
| + | ** [http://msstp.org/sites/default/files/ex4_tba.pdf Romuald Janik, TBA Integral Equations exercise.pdf]  | ||
| + | ** [http://msstp.org/sites/default/files/tba_answer.nb Romuald Janik, TBA Integral Equations solution.nb]  | ||
| + | |||
| + | |||
| + | ==관련된 항목들==  | ||
| + | * [[대수적 베테 가설 풀이(algebraic Bethe ansatz)]]  | ||
| + | |||
| + | |||
| + | [[분류:통계물리]]  | ||
| + | [[분류:통계물리]]  | ||
| + | |||
| + | ==메타데이터==  | ||
| + | ===위키데이터===  | ||
| + | * ID :  [https://www.wikidata.org/wiki/Q1366833 Q1366833]  | ||
| + | ===Spacy 패턴 목록===  | ||
| + | * [{'LEMMA': 'rapidity'}]  | ||
2021년 2월 17일 (수) 02:30 기준 최신판
개요
- 산란행렬로부터 바닥상태의 에너지를 비섭동적으로 계산할 수 있는 방법
 
basic notions for particle scattering
- infinitely long cylinder of radius \(R\)
 - N species of particles
 - mass of particles \(m_{a}, a=1,\cdots, N\)
 - rapidity \(\theta\) (also called spectral parameter or wave number)
- a notion from relativity
 - http://en.wikipedia.org/wiki/Rapidity
 
 - energy \(E=m_{a}R\cosh \theta\)
 - momentum \(p=m_{a}R\sinh \theta\)
 - energy-momentum vector \(p^{\mu}=(E,P)\)
 - 산란행렬 S-matrix (factorizable scattering theory)\[S_{ab}(\theta)\]
 - symmetric matrix kernel \[\phi_{ab}(\theta)=-i\frac{d}{d\theta}\log S_{ab}(\theta)\]
 - spectral density of particles \(\epsilon_{a}(\theta)\)
- also called the pseudoenergy
 
 - Y-system \(Y_{a}(\theta)=e^{-\epsilon_{a}(\theta)}\) i.e. exponential of spectral density
 - ground state energy \(E(R)\)
 - scaling function \(c(R)\) related to the central charge
 - TBA equation
- equation to find the spectral density functions \(\epsilon_{a}(\theta)\)
 
 - UV limit
- plateau behaviour
 - \(\epsilon_{a}(\theta)\) becomes constant in a large region for \(\theta\) when r(inverse temperature) is small
 
 - IR limit
 
 
 
limit
- energy \(E=m_{a}R\cosh \theta\)
 - momentum \(p=m_{a}R\sinh \theta\)
 - in the CFT limit, we regard \theta \to \infty for right movers and -\infty for left movers
 - Thus we get, E=p and E=-p respectively in CFT limit
 
 
 
TBA equation
- a system which interacts dynamically via the scattering matrix and statistically via Fermi statistics\[Rm_{a}^{i}\cosh\theta = \epsilon_{a}^{i}(\theta)+\frac{1}{2\pi}\sum_{b=1}^{l}\sum_{j=1}^{\tilde{l}}\int_{-\infty}^{\infty} d\theta' \phi_{ab}^{ij}(\theta-\theta')\ln (1+e^{-\epsilon_{b}^{j}(\theta')})\] where \(R=T^{-1}\) is the inverse temperature and \(m_{a}^{i}\) the mass of particle (a,i)
 
예 : Yang-Lee 모형
- 1 particle
 - 산란행렬
 
\[ S_{11}(\theta)=\tanh \left(\frac{1}{2} \left(\theta -\frac{2 i \pi }{3}\right)\right) \coth \left(\frac{1}{2} \left(\theta +\frac{2 i \pi }{3}\right)\right) \]
- 커널
 
\[ \phi_{11}(\theta)=-i\frac{d}{d\theta}\log S_{11}(\theta)=\sqrt{3} \left(\frac{1}{2 \cosh (\theta )+1}+\frac{1}{2 \cosh (\theta )-1}\right) \]
\[ N=\frac{1}{2\pi}\int_{-\infty}^{\infty}\phi_{11}(\theta)=1 \]
계산 리소스
관련된 항목들
메타데이터
위키데이터
- ID : Q1366833
 
Spacy 패턴 목록
- [{'LEMMA': 'rapidity'}]