"가우스-요르단 소거법"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “==관련논문== * http://www.jstor.org/action/doBasicSearch?Query= * http://www.ams.org/mathscinet * http://dx.doi.org/” 문자열을 “” 문자열로)
 
(같은 사용자의 중간 판 9개는 보이지 않습니다)
1번째 줄: 1번째 줄:
==이 항목의 수학노트 원문주소==
 
 
* [[가우스-조단 소거법]]
 
 
 
 
 
 
 
 
 
==개요==
 
==개요==
  
12번째 줄: 4번째 줄:
 
* 선형연립방정식의 해법, 역행렬의 계산 등에 활용할 수 있다
 
* 선형연립방정식의 해법, 역행렬의 계산 등에 활용할 수 있다
  
 
+
  
 
+
  
 
==예==
 
==예==
20번째 줄: 12번째 줄:
 
<math>\left( \begin{array}{ccc}  1 & -3 & 0 \\  -1 & 1 & 5 \\  0 & 1 & 1 \end{array} \right)</math> 에 가우스-조단 소거법을 적용한 경우
 
<math>\left( \begin{array}{ccc}  1 & -3 & 0 \\  -1 & 1 & 5 \\  0 & 1 & 1 \end{array} \right)</math> 에 가우스-조단 소거법을 적용한 경우
  
 
+
  
 
<math>\begin{array}{l}  \left( \begin{array}{ccc}  1 & -3 & 0 \\  -1 & 1 & 5 \\  0 & 1 & 1 \end{array} \right) \\  \left( \begin{array}{ccc}  1 & -3 & 0 \\  0 & -2 & 5 \\  0 & 1 & 1 \end{array} \right) \\  \left( \begin{array}{ccc}  1 & -3 & 0 \\  0 & 1 & -\frac{5}{2} \\  0 & 1 & 1 \end{array} \right) \\  \left( \begin{array}{ccc}  1 & 0 & -\frac{15}{2} \\  0 & 1 & -\frac{5}{2} \\  0 & 1 & 1 \end{array} \right) \\  \left( \begin{array}{ccc}  1 & 0 & -\frac{15}{2} \\  0 & 1 & -\frac{5}{2} \\  0 & 0 & \frac{7}{2} \end{array} \right) \\  \left( \begin{array}{ccc}  1 & 0 & -\frac{15}{2} \\  0 & 1 & -\frac{5}{2} \\  0 & 0 & 1 \end{array} \right) \\  \left( \begin{array}{ccc}  1 & 0 & 0 \\  0 & 1 & -\frac{5}{2} \\  0 & 0 & 1 \end{array} \right) \\  \left( \begin{array}{ccc}  1 & 0 & 0 \\  0 & 1 & 0 \\  0 & 0 & 1 \end{array} \right) \end{array}</math>
 
<math>\begin{array}{l}  \left( \begin{array}{ccc}  1 & -3 & 0 \\  -1 & 1 & 5 \\  0 & 1 & 1 \end{array} \right) \\  \left( \begin{array}{ccc}  1 & -3 & 0 \\  0 & -2 & 5 \\  0 & 1 & 1 \end{array} \right) \\  \left( \begin{array}{ccc}  1 & -3 & 0 \\  0 & 1 & -\frac{5}{2} \\  0 & 1 & 1 \end{array} \right) \\  \left( \begin{array}{ccc}  1 & 0 & -\frac{15}{2} \\  0 & 1 & -\frac{5}{2} \\  0 & 1 & 1 \end{array} \right) \\  \left( \begin{array}{ccc}  1 & 0 & -\frac{15}{2} \\  0 & 1 & -\frac{5}{2} \\  0 & 0 & \frac{7}{2} \end{array} \right) \\  \left( \begin{array}{ccc}  1 & 0 & -\frac{15}{2} \\  0 & 1 & -\frac{5}{2} \\  0 & 0 & 1 \end{array} \right) \\  \left( \begin{array}{ccc}  1 & 0 & 0 \\  0 & 1 & -\frac{5}{2} \\  0 & 0 & 1 \end{array} \right) \\  \left( \begin{array}{ccc}  1 & 0 & 0 \\  0 & 1 & 0 \\  0 & 0 & 1 \end{array} \right) \end{array}</math>
  
 
+
 
 
 
 
 
 
==역사==
 
 
 
 
 
 
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
* [[수학사연표 (역사)|수학사연표]]
 
 
 
 
 
  
 
+
  
 
==메모==
 
==메모==
  
 
* http://math.fullerton.edu/mathews/n2003/GaussianJordanMod.html
 
* http://math.fullerton.edu/mathews/n2003/GaussianJordanMod.html
* Math Overflow http://mathoverflow.net/search?q=
 
 
 
 
 
 
 
  
 
==관련된 항목들==
 
==관련된 항목들==
 
+
* [[가우스 소거법]]
 
 
 
 
 
 
 
 
==수학용어번역==
 
 
 
*  단어사전<br>
 
** http://translate.google.com/#en|ko|
 
** http://ko.wiktionary.org/wiki/
 
* 발음사전 http://www.forvo.com/search/
 
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 
* [http://www.kss.or.kr/pds/sec/dic.aspx 한국통계학회 통계학 용어 온라인 대조표]
 
* [http://cgi.postech.ac.kr/cgi-bin/cgiwrap/sand/terms/terms.cgi 한국물리학회 물리학 용어집 검색기]
 
* [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교]
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 
 
 
 
 
 
 
 
 
  
 
==매스매티카 파일 및 계산 리소스==
 
==매스매티카 파일 및 계산 리소스==
  
 
* https://docs.google.com/file/d/0B8XXo8Tve1cxY2xCTnByU2hWZDg/edit
 
* https://docs.google.com/file/d/0B8XXo8Tve1cxY2xCTnByU2hWZDg/edit
* http://www.wolframalpha.com/input/?i=
 
* http://functions.wolfram.com/
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://people.math.sfu.ca/%7Ecbm/aands/toc.htm Abramowitz and Stegun Handbook of mathematical functions]
 
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
 
* [http://numbers.computation.free.fr/Constants/constants.html Numbers, constants and computation]
 
* [https://docs.google.com/open?id=0B8XXo8Tve1cxMWI0NzNjYWUtNmIwZi00YzhkLTkzNzQtMDMwYmVmYmIxNmIw 매스매티카 파일 목록]
 
 
 
 
 
 
 
 
==사전 형태의 자료==
 
 
* [http://ko.wikipedia.org/wiki/%EA%B0%80%EC%9A%B0%EC%8A%A4_%EC%86%8C%EA%B1%B0%EB%B2%95 http://ko.wikipedia.org/wiki/가우스_소거법]
 
* http://en.wikipedia.org/wiki/
 
* [http://www.encyclopediaofmath.org/index.php/Main_Page Encyclopaedia of Mathematics]
 
* [http://dlmf.nist.gov NIST Digital Library of Mathematical Functions]
 
* [http://eqworld.ipmnet.ru/ The World of Mathematical Equations]
 
 
 
 
 
 
 
 
==리뷰논문, 에세이, 강의노트==
 
 
 
 
 
 
 
 
 
 
  
 +
== 노트 ==
  
 +
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q1195020 Q1195020]
 +
===말뭉치===
 +
# Here you can solve systems of simultaneous linear equations using Gauss-Jordan Elimination Calculator with complex numbers online for free with a very detailed solution.<ref name="ref_0b4aca7d">[https://matrix.reshish.com/gauss-jordanElimination.php Gauss-Jordan Elimination Calculator]</ref>
 +
# In fact Gauss-Jordan elimination algorithm is divided into forward elimination and back substitution.<ref name="ref_0b4aca7d" />
 +
# But practically it is more convenient to eliminate all elements below and above at once when using Gauss-Jordan elimination calculator.<ref name="ref_0b4aca7d" />
 +
# To understand Gauss-Jordan elimination algorithm better input any example, choose "very detailed solution" option and examine the solution.<ref name="ref_0b4aca7d" />
 +
# Gauss-Jordan Elimination is an algorithm that can be used to solve systems of linear equations and to find the inverse of any invertible matrix.<ref name="ref_9df6f756">[https://online.stat.psu.edu/statprogram/reviews/matrix-algebra/gauss-jordan-elimination M.7 Gauss-Jordan Elimination]</ref>
 +
# It's called Gauss-Jordan elimination, to find the inverse of the matrix.<ref name="ref_5de8f0af">[https://www.khanacademy.org/math/algebra-home/alg-matrices/alg-determinants-and-inverses-of-large-matrices/v/inverting-matrices-part-3 Inverting a 3x3 matrix using Gaussian elimination (video)]</ref>
 +
# And we did this using Gauss-Jordan elimination.<ref name="ref_5de8f0af" />
 +
# To obtain an initial basic feasible solution, the Gauss-Jordan elimination procedure can be used to convert the Ax = b in the canonical form.<ref name="ref_5dd0e144">[https://www.sciencedirect.com/topics/mathematics/gauss-jordan-elimination Gauss-Jordan Elimination - an overview]</ref>
 +
# Using row operations to convert a matrix into reduced row echelon form is sometimes called Gauss–Jordan elimination.<ref name="ref_4ea5c7c1">[https://en.wikipedia.org/wiki/Gaussian_elimination Gaussian elimination]</ref>
 +
# A variant of Gaussian elimination called Gauss–Jordan elimination can be used for finding the inverse of a matrix, if it exists.<ref name="ref_4ea5c7c1" />
 +
# To convert any matrix to its reduced row echelon form, Gauss-Jordan elimination is performed.<ref name="ref_2442948a">[https://brilliant.org/wiki/gaussian-elimination/ Brilliant Math & Science Wiki]</ref>
 +
# Gauss-Jordan elimination is a mechanical procedure for transforming a given system of linear equations to \(Rx = d\) with \(R\) in RREF using only elementary row operations.<ref name="ref_ed67f156">[https://people.math.carleton.ca/~kcheung/math/notes/MATH1107/wk04/04_gaussian_elimination.html Gauss-Jordan Elimination]</ref>
 +
# This more-complete method of solving is called "Gauss-Jordan elimination" (with the equations ending up in what is called "reduced-row-echelon form").<ref name="ref_6a27c3d5">[https://www.purplemath.com/modules/systlin6.htm Systems of Linear Equations: Gaussian Elimination]</ref>
 +
# Gauss–Jordan elimination is backward stable for matrices diagonally dominant by rows and not for those diagonally dominant by columns.<ref name="ref_079137b8">[https://link.springer.com/article/10.1007/s006070070012 A Note on the Stability of Gauss–Jordan Elimination for Diagonally Dominant Matrices]</ref>
 +
# Use Gauss-Jordan elimination on augmented matrices to solve a linear system and calculate the matrix inverse.<ref name="ref_0e1a698d">[https://www.mathworks.com/help/matlab/ref/rref.html Reduced row echelon form (Gauss-Jordan elimination)]</ref>
 +
# We apply the Gauss-Jordan Elimination method: we obtain the reduced row echelon form from the augmented matrix of the equation system by performing elemental operations in rows (or columns).<ref name="ref_fd11c78b">[https://www.matesfacil.com/english/high/solving-systems-by-Gaussian-Elimination.html GAUSSIAN ELIMINATION: SOLVNG LINEAR EQUATION SYSTEMS: EXAMPLES AND SOLVED PROBLEMS: HIGH SCHOOL]</ref>
 +
# But in case of Gauss-Jordan Elimination Method, we only have to form a reduced row echelon form (diagonal matrix).<ref name="ref_fa645610">[https://www.geeksforgeeks.org/program-for-gauss-jordan-elimination-method/ Program for Gauss-Jordan Elimination Method]</ref>
 +
# Gauss-Jordan Elimination Method can be used for finding the solution of a systems of linear equations which is applied throughout the mathematics.<ref name="ref_fa645610" />
 +
# The Gauss-Jordan Elimination method can be used in determining the inverse of a square matrix.<ref name="ref_fa645610" />
 +
===소스===
 +
<references />
  
 
+
 +
[[분류:선형대수학]]
  
 
+
==메타데이터==
 +
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q1195020 Q1195020]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'gauss'}, {'OP': '*'}, {'LOWER': 'jordan'}, {'LEMMA': 'elimination'}]

2021년 2월 17일 (수) 04:56 기준 최신판

개요

  • 선형대수학의 중요한 알고리즘의 하나
  • 선형연립방정식의 해법, 역행렬의 계산 등에 활용할 수 있다



\(\left( \begin{array}{ccc} 1 & -3 & 0 \\ -1 & 1 & 5 \\ 0 & 1 & 1 \end{array} \right)\) 에 가우스-조단 소거법을 적용한 경우


\(\begin{array}{l} \left( \begin{array}{ccc} 1 & -3 & 0 \\ -1 & 1 & 5 \\ 0 & 1 & 1 \end{array} \right) \\ \left( \begin{array}{ccc} 1 & -3 & 0 \\ 0 & -2 & 5 \\ 0 & 1 & 1 \end{array} \right) \\ \left( \begin{array}{ccc} 1 & -3 & 0 \\ 0 & 1 & -\frac{5}{2} \\ 0 & 1 & 1 \end{array} \right) \\ \left( \begin{array}{ccc} 1 & 0 & -\frac{15}{2} \\ 0 & 1 & -\frac{5}{2} \\ 0 & 1 & 1 \end{array} \right) \\ \left( \begin{array}{ccc} 1 & 0 & -\frac{15}{2} \\ 0 & 1 & -\frac{5}{2} \\ 0 & 0 & \frac{7}{2} \end{array} \right) \\ \left( \begin{array}{ccc} 1 & 0 & -\frac{15}{2} \\ 0 & 1 & -\frac{5}{2} \\ 0 & 0 & 1 \end{array} \right) \\ \left( \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & -\frac{5}{2} \\ 0 & 0 & 1 \end{array} \right) \\ \left( \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right) \end{array}\)



메모

관련된 항목들

매스매티카 파일 및 계산 리소스

노트

위키데이터

말뭉치

  1. Here you can solve systems of simultaneous linear equations using Gauss-Jordan Elimination Calculator with complex numbers online for free with a very detailed solution.[1]
  2. In fact Gauss-Jordan elimination algorithm is divided into forward elimination and back substitution.[1]
  3. But practically it is more convenient to eliminate all elements below and above at once when using Gauss-Jordan elimination calculator.[1]
  4. To understand Gauss-Jordan elimination algorithm better input any example, choose "very detailed solution" option and examine the solution.[1]
  5. Gauss-Jordan Elimination is an algorithm that can be used to solve systems of linear equations and to find the inverse of any invertible matrix.[2]
  6. It's called Gauss-Jordan elimination, to find the inverse of the matrix.[3]
  7. And we did this using Gauss-Jordan elimination.[3]
  8. To obtain an initial basic feasible solution, the Gauss-Jordan elimination procedure can be used to convert the Ax = b in the canonical form.[4]
  9. Using row operations to convert a matrix into reduced row echelon form is sometimes called Gauss–Jordan elimination.[5]
  10. A variant of Gaussian elimination called Gauss–Jordan elimination can be used for finding the inverse of a matrix, if it exists.[5]
  11. To convert any matrix to its reduced row echelon form, Gauss-Jordan elimination is performed.[6]
  12. Gauss-Jordan elimination is a mechanical procedure for transforming a given system of linear equations to \(Rx = d\) with \(R\) in RREF using only elementary row operations.[7]
  13. This more-complete method of solving is called "Gauss-Jordan elimination" (with the equations ending up in what is called "reduced-row-echelon form").[8]
  14. Gauss–Jordan elimination is backward stable for matrices diagonally dominant by rows and not for those diagonally dominant by columns.[9]
  15. Use Gauss-Jordan elimination on augmented matrices to solve a linear system and calculate the matrix inverse.[10]
  16. We apply the Gauss-Jordan Elimination method: we obtain the reduced row echelon form from the augmented matrix of the equation system by performing elemental operations in rows (or columns).[11]
  17. But in case of Gauss-Jordan Elimination Method, we only have to form a reduced row echelon form (diagonal matrix).[12]
  18. Gauss-Jordan Elimination Method can be used for finding the solution of a systems of linear equations which is applied throughout the mathematics.[12]
  19. The Gauss-Jordan Elimination method can be used in determining the inverse of a square matrix.[12]

소스

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'gauss'}, {'OP': '*'}, {'LOWER': 'jordan'}, {'LEMMA': 'elimination'}]