"셀베르그 적분(Selberg integral)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(사용자 2명의 중간 판 39개는 보이지 않습니다)
1번째 줄: 1번째 줄:
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5>
+
==개요==
  
* [[셀베르그 적분(Selberg integral)|Selberg 적분]]<br>
+
* [[오일러 베타적분(베타함수)]]의 일반화
 +
:<math>
 +
\begin{align} S_{n} (\alpha, \beta, \gamma) & =
 +
\int_0^1 \cdots \int_0^1 \prod_{i=1}^n t_i^{\alpha-1}(1-t_i)^{\beta-1} \prod_{1 \le i < j \le n} |t_i - t_j |^{2 \gamma}\,dt_1 \cdots dt_n \\
 +
& = \prod_{j = 0}^{n-1}  \frac {\Gamma(\alpha + j \gamma) \Gamma(\beta + j \gamma) \Gamma (1 + (j+1)\gamma)}  {\Gamma(\alpha + \beta + (n+j-1)\gamma) \Gamma(1+\gamma)} \end{align},</math>
 +
여기서
 +
:<math>
 +
\Re(\alpha)>0, \Re(\beta)>0, \Re(\gamma)>\max\{-\frac{1}{n},-\frac{\Re{\alpha}}{n-1},-\frac{\Re{\beta}}{n-1}\}
 +
</math>
 +
*  n=1 인 경우
 +
:<math>S_{1} (\alpha, \beta,\gamma)=B(\alpha,\beta) = \int_0^1t^{\alpha-1}(1-t)^{\beta-1}\,dt</math>
  
 
 
  
 
+
==메모==
 +
* Algebra (Coxeter groups, double affine Hecke algebras)
 +
* Conformal field theory (KZ equations)
 +
* Gauge theory (supersymmetry, AGT conjecture)
 +
* Geometry (hyperplane arrangements)
 +
* Number theory (moments <math>\zeta(s)</math>
 +
* Orthogonal polynomials (Generalised Jacobi polynomials)
 +
* Random matrices
 +
* Statistics
 +
* Statistical physics
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요</h5>
+
==관련된 항목들==
 +
* [[오일러 베타적분(베타함수)|오일러 베타적분]]
 +
* [[맥도날드-메타 적분]]
 +
* [[타원 셀베르그 적분]]
 +
* [[Chowla-셀베르그 공식]]
  
* [[오일러 베타적분(베타함수)|오일러 베타적분]]의 일반화<br><math>\begin{align} S_{n} (\alpha, \beta, \gamma) & = \int_0^1 \cdots \int_0^1 \prod_{i=1}^n t_i^{\alpha-1}(1-t_i)^{\beta-1} \prod_{1 \le i < j \le n} |t_i - t_j |^{2 \gamma}\,dt_1 \cdots dt_n = \\ & = \prod_{j = 0}^{n-1}  \frac {\Gamma(\alpha + j \gamma) \Gamma(\beta + j \gamma) \Gamma (1 + (j+1)\gamma)}  {\Gamma(\alpha + \beta + (n+j-1)\gamma) \Gamma(1+\gamma)} \end{align}</math><br>
 
*  n=1 인 경우<br><math>S_{1} (\alpha, \beta,\gamma)=B(\alpha,\beta) = \int_0^1t^{\alpha-1}(1-t)^{\beta-1}\,dt</math><br>
 
  
 
+
==매스매티카 파일 및 계산 리소스==
 +
* https://drive.google.com/file/d/0B8XXo8Tve1cxLVdyVDk2N0Yydjg/view
  
 
+
==사전 형태의 자료==
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">재미있는 사실</h5>
 
 
 
 
 
 
 
* Math Overflow http://mathoverflow.net/search?q=
 
* 네이버 지식인 http://kin.search.naver.com/search.naver?where=kin_qna&query=
 
 
 
 
 
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">역사</h5>
 
 
 
 
 
 
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
* [[수학사연표 (역사)|수학사연표]]
 
*  
 
 
 
 
 
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">메모</h5>
 
 
 
 
 
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련된 항목들</h5>
 
 
 
* [[오일러 베타적분(베타함수)|오일러 베타적분]]<br>
 
* [[Chowla-셀베르그 공식]]<br>
 
 
 
 
 
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역</h5>
 
 
 
* 단어사전 http://www.google.com/dictionary?langpair=en|ko&q=
 
* 발음사전 http://www.forvo.com/search/
 
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 
* [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교]
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 
 
 
 
 
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">사전 형태의 자료</h5>
 
 
 
* http://ko.wikipedia.org/wiki/
 
 
* http://en.wikipedia.org/wiki/Selberg_integral
 
* http://en.wikipedia.org/wiki/Selberg_integral
* http://en.wikipedia.org/wiki/
 
* http://www.wolframalpha.com/input/?i=
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]<br>
 
** http://www.research.att.com/~njas/sequences/?q=
 
 
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련논문</h5>
 
 
* [http://dx.doi.org/10.1007/s11005-009-0330-7 On a Selberg–Schur Integral]<br>
 
** Sergio Manuel Iguri, 2009
 
* [http://www.maths.uq.edu.au/%7Euqowarna/talks/Wien.pdf Beta Integrals]<br>
 
** S. Ole Warnaar
 
 
* [http://www.ams.org/journals/bull/2008-45-04/S0273-0979-08-01221-4/home.html The importance of the Selberg integral]<br>
 
** Peter J. Forrester; S. Ole Warnaar, Bull. Amer. Math. Soc. 45 (2008), 489-534.
 
 
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://www.ams.org/mathscinet
 
* http://dx.doi.org/
 
 
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련도서</h5>
 
 
*  도서내검색<br>
 
** http://books.google.com/books?q=
 
** http://book.daum.net/search/contentSearch.do?query=
 
*  도서검색<br>
 
** http://books.google.com/books?q=
 
** http://book.daum.net/search/mainSearch.do?query=
 
** http://book.daum.net/search/mainSearch.do?query=
 
 
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련기사</h5>
 
  
*  네이버 뉴스 검색 (키워드 수정)<br>
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
  
 
+
==리뷰, 에세이, 강의노트==
 +
* Alessandro Zaccagnini, The Selberg integral and a new pair-correlation function for the zeros of the Riemann zeta-function, http://arxiv.org/abs/1603.02952v1
 +
* Warnaar, [http://www.maths.adelaide.edu.au/thomas.leistner/colloquium/20110805OleWarnaar/Selberg.pdf The Selberg Integral], 2011
 +
* Warnaar, [http://www.maths.uq.edu.au/~uqowarna/talks/FPSAC08.pdf The Mukhin{Varchenko conjecture for type A], 2008
 +
* Warnaar, [http://www.maths.uq.edu.au/%7Euqowarna/talks/Wien.pdf Beta Integrals]
 +
* Forrester, Peter, and S. Warnaar. “The Importance of the Selberg Integral.” Bulletin of the American Mathematical Society 45, no. 4 (2008): 489–534. doi:[http://www.ams.org/journals/bull/2008-45-04/S0273-0979-08-01221-4/home.html 10.1090/S0273-0979-08-01221-4].
  
 
+
==관련논문==
 +
* Peter J. Forrester, Volumes for <math>{\rm SL}_N(\mathbb R)</math>, the Selberg integral and random lattices, arXiv:1604.07462 [math-ph], April 25 2016, http://arxiv.org/abs/1604.07462
 +
* Rosengren, Hjalmar. “Selberg Integrals, Askey-Wilson Polynomials and Lozenge Tilings of a Hexagon with a Triangular Hole.” arXiv:1503.00971 [math], March 3, 2015. http://arxiv.org/abs/1503.00971.
 +
* Patterson, Samuel J. “Selberg Sums - a New Perspective.” arXiv:1411.7600 [math], November 27, 2014. http://arxiv.org/abs/1411.7600.
 +
* Rains, Eric M. “Multivariate Quadratic Transformations and the Interpolation Kernel.” arXiv:1408.0305 [math], August 1, 2014. http://arxiv.org/abs/1408.0305.
 +
* Mironov, S., A. Morozov, and Y. Zenkevich. ‘Generalized Jack Polynomials and the AGT Relations for the SU(3) Group’. JETP Letters 99, no. 2 (1 March 2014): 109–13. doi:10.1134/S0021364014020076.
 +
* Zhang, Hong, and Yutaka Matsuo. ‘Selberg Integral and SU(N) AGT Conjecture’. Journal of High Energy Physics 2011, no. 12 (December 2011). doi:10.1007/JHEP12(2011)106.
 +
* Mironov, A., Al Morozov, and And Morozov. ‘Matrix Model Version of AGT Conjecture and Generalized Selberg Integrals’. Nuclear Physics B 843, no. 2 (February 2011): 534–57. doi:10.1016/j.nuclphysb.2010.10.016.
 +
* Warnaar, S. Ole. “The <math>\mathfrak{sl}_3</math> Selberg Integral.” Advances in Mathematics 224, no. 2 (2010): 499–524. doi:10.1016/j.aim.2009.11.011.
 +
* Warnaar, S. Ole. “A Selberg Integral for the Lie Algebra <math>A_n</math>.” Acta Mathematica 203, no. 2 (2009): 269–304. doi:10.1007/s11511-009-0043-x.
 +
* Warnaar, S. Ole. ‘The Mukhin--Varchenko Conjecture for Type A’. DMTCS Proceedings 0, no. 1 (22 December 2008). http://www.dmtcs.org/dmtcs-ojs/index.php/proceedings/article/view/dmAJ0108.
 +
* Luque, Jean-Gabriel, and Jean-Yves Thibon. “Hankel Hyperdeterminants and Selberg Integrals.” Journal of Physics A: Mathematical and General 36, no. 19 (May 16, 2003): 5267. doi:10.1088/0305-4470/36/19/306.
 +
* Tarasov, V., and A. Varchenko. ‘Selberg-Type Integrals Associated with SL3’. Letters in Mathematical Physics 65, no. 3 (1 September 2003): 173–85. doi:10.1023/B:MATH.0000010712.67685.9d.
 +
* Gustafson, Robert A. “A Generalization of Selberg’s Beta Integral.” Bulletin (New Series) of the American Mathematical Society 22, no. 1 (January 1990): 97–105.
 +
* Selberg, Atle. “Remarks on a Multiple Integral.” Norsk Mat. Tidsskr. 26 (1944): 71–78.
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">블로그</h5>
+
[[분류:적분]]
 +
[[분류:특수함수]]
  
*  구글 블로그 검색<br>
+
==메타데이터==
** http://blogsearch.google.com/blogsearch?q=
+
===위키데이터===
* [http://navercast.naver.com/science/list 네이버 오늘의과학]
+
* ID : [https://www.wikidata.org/wiki/Q7447525 Q7447525]
* [http://math.dongascience.com/ 수학동아]
+
===Spacy 패턴 목록===
* [http://www.ams.org/mathmoments/ Mathematical Moments from the AMS]
+
* [{'LOWER': 'selberg'}, {'LEMMA': 'integral'}]
* [http://betterexplained.com/ BetterExplained]
 

2021년 2월 17일 (수) 05:48 기준 최신판

개요

\[ \begin{align} S_{n} (\alpha, \beta, \gamma) & = \int_0^1 \cdots \int_0^1 \prod_{i=1}^n t_i^{\alpha-1}(1-t_i)^{\beta-1} \prod_{1 \le i < j \le n} |t_i - t_j |^{2 \gamma}\,dt_1 \cdots dt_n \\ & = \prod_{j = 0}^{n-1} \frac {\Gamma(\alpha + j \gamma) \Gamma(\beta + j \gamma) \Gamma (1 + (j+1)\gamma)} {\Gamma(\alpha + \beta + (n+j-1)\gamma) \Gamma(1+\gamma)} \end{align},\] 여기서 \[ \Re(\alpha)>0, \Re(\beta)>0, \Re(\gamma)>\max\{-\frac{1}{n},-\frac{\Re{\alpha}}{n-1},-\frac{\Re{\beta}}{n-1}\} \]

  • n=1 인 경우

\[S_{1} (\alpha, \beta,\gamma)=B(\alpha,\beta) = \int_0^1t^{\alpha-1}(1-t)^{\beta-1}\,dt\]


메모

  • Algebra (Coxeter groups, double affine Hecke algebras)
  • Conformal field theory (KZ equations)
  • Gauge theory (supersymmetry, AGT conjecture)
  • Geometry (hyperplane arrangements)
  • Number theory (moments \(\zeta(s)\)
  • Orthogonal polynomials (Generalised Jacobi polynomials)
  • Random matrices
  • Statistics
  • Statistical physics

관련된 항목들


매스매티카 파일 및 계산 리소스

사전 형태의 자료


리뷰, 에세이, 강의노트

관련논문

  • Peter J. Forrester, Volumes for \({\rm SL}_N(\mathbb R)\), the Selberg integral and random lattices, arXiv:1604.07462 [math-ph], April 25 2016, http://arxiv.org/abs/1604.07462
  • Rosengren, Hjalmar. “Selberg Integrals, Askey-Wilson Polynomials and Lozenge Tilings of a Hexagon with a Triangular Hole.” arXiv:1503.00971 [math], March 3, 2015. http://arxiv.org/abs/1503.00971.
  • Patterson, Samuel J. “Selberg Sums - a New Perspective.” arXiv:1411.7600 [math], November 27, 2014. http://arxiv.org/abs/1411.7600.
  • Rains, Eric M. “Multivariate Quadratic Transformations and the Interpolation Kernel.” arXiv:1408.0305 [math], August 1, 2014. http://arxiv.org/abs/1408.0305.
  • Mironov, S., A. Morozov, and Y. Zenkevich. ‘Generalized Jack Polynomials and the AGT Relations for the SU(3) Group’. JETP Letters 99, no. 2 (1 March 2014): 109–13. doi:10.1134/S0021364014020076.
  • Zhang, Hong, and Yutaka Matsuo. ‘Selberg Integral and SU(N) AGT Conjecture’. Journal of High Energy Physics 2011, no. 12 (December 2011). doi:10.1007/JHEP12(2011)106.
  • Mironov, A., Al Morozov, and And Morozov. ‘Matrix Model Version of AGT Conjecture and Generalized Selberg Integrals’. Nuclear Physics B 843, no. 2 (February 2011): 534–57. doi:10.1016/j.nuclphysb.2010.10.016.
  • Warnaar, S. Ole. “The \(\mathfrak{sl}_3\) Selberg Integral.” Advances in Mathematics 224, no. 2 (2010): 499–524. doi:10.1016/j.aim.2009.11.011.
  • Warnaar, S. Ole. “A Selberg Integral for the Lie Algebra \(A_n\).” Acta Mathematica 203, no. 2 (2009): 269–304. doi:10.1007/s11511-009-0043-x.
  • Warnaar, S. Ole. ‘The Mukhin--Varchenko Conjecture for Type A’. DMTCS Proceedings 0, no. 1 (22 December 2008). http://www.dmtcs.org/dmtcs-ojs/index.php/proceedings/article/view/dmAJ0108.
  • Luque, Jean-Gabriel, and Jean-Yves Thibon. “Hankel Hyperdeterminants and Selberg Integrals.” Journal of Physics A: Mathematical and General 36, no. 19 (May 16, 2003): 5267. doi:10.1088/0305-4470/36/19/306.
  • Tarasov, V., and A. Varchenko. ‘Selberg-Type Integrals Associated with SL3’. Letters in Mathematical Physics 65, no. 3 (1 September 2003): 173–85. doi:10.1023/B:MATH.0000010712.67685.9d.
  • Gustafson, Robert A. “A Generalization of Selberg’s Beta Integral.” Bulletin (New Series) of the American Mathematical Society 22, no. 1 (January 1990): 97–105.
  • Selberg, Atle. “Remarks on a Multiple Integral.” Norsk Mat. Tidsskr. 26 (1944): 71–78.

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'selberg'}, {'LEMMA': 'integral'}]