"원주율의 BBP 공식"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(사용자 2명의 중간 판 23개는 보이지 않습니다)
1번째 줄: 1번째 줄:
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5>
+
==개요==
  
 
+
*  원주율의 값을 16진수로 표현할 때, 각 자리에 어떤 값이 오는지를 구할 수 있게 해주는 공식
 +
*  Spigot 알고리즘의 대표적인 예이다
 +
*  다음 공식에 의하여 얻어짐
 +
:<math>\pi = \sum_{k = 0}^{\infty}\frac{1}{16^k} \left( \frac{4}{8k + 1} - \frac{2}{8k + 4} - \frac{1}{8k + 5} - \frac{1}{8k + 6} \right)\label{bbp}</math>
  
 
+
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">개요</h5>
+
  
*  원주율의 값을 16진수로 표현할 때, 각 자리에 어떤 값이 오는지를 구할 수 있게 해주는 공식<br>
+
==공식의 증명==
* 다음 공식에 의하여 얻어짐<br><math>\pi = \sum_{k = 0}^{\infty}\frac{1}{16^k} \left( \frac{4}{8k + 1} - \frac{2}{8k + 4} - \frac{1}{8k + 5} - \frac{1}{8k + 6} \right)</math><br>
+
\ref{bbp}가 다음의 등식과 동치이다
 +
:<math>\pi=\int_{0}^{1/\sqrt{2}}\frac{4\sqrt{2}-8x^3-4\sqrt{2}x^4-8x^5}{1-x^8}\,dx</math>
 +
   
 +
다음을 이용하면 된다
 +
:<math>
 +
\begin{align}
 +
\quad \int_{0}^{1/\sqrt{2}}\frac{x^{k-1}}{1-x^8}\,dx & = \int_{0}^{1/\sqrt{2}}\sum_{i=0}^{\infty}x^{k-1+8i}\,dx \\
 +
{} & = \frac{1}{\sqrt{2}^k}\sum_{i=0}^{\infty}\frac{1}{16^{i}(8i+k)}
 +
\end{align}
 +
</math>
 +
  
 
+
  
 
+
  
<h5 style="line-height: 2em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px;">공식의 증명</h5>
+
==원주율의 16진법 전개==
  
<math>\pi = \sum_{k = 0}^{\infty}\frac{1}{16^k} \left( \frac{4}{8k + 1} - \frac{2}{8k + 4} - \frac{1}{8k + 5} - \frac{1}{8k + 6} \right)</math>
+
* http://www.wolframalpha.com/input/?i=pi+in+base+16:<math>\pi = 3.243f6a8885a308d313198a2e03707\cdots_{16}</math>
  
(증명)
+
  
<math>\pi=\int_{0}^{1/\sqrt{2}}\frac{4\sqrt{2}-8x^3-4\sqrt{2}x^4-8x^5}{1-x^8}\,dx</math>
 
  
와 동치임을 다음을 통해 알 수 있다.
+
  
<math>\int_{0}^{1/\sqrt{2}}\frac{x^{k-1}}{1-x^8}\,dx=\int_{0}^{1/\sqrt{2}}\sum_{i=0}^{\infty}{x^{k-1+8i}\,dx=\frac{1}{\sqrt{2}^k}\sum_{i=0}^{\infty}\frac{1}{16^{i}(8i+k)}</math> ■
+
==메모==
 +
* http://blog.naver.com/j3b5mj2224/80067439599
  
 
+
  
 
+
  
<h5 style="line-height: 2em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px;">원주율의 16진법 전개</h5>
+
==관련된 항목들==
  
* http://www.wolframalpha.com/input/?i=pi+in+base+16<br><math>\pi = 3.243f6a8885a308d313198a2e03707\cdots_{16}</math><br>
+
  
 
+
==계산 리소스==
 +
* https://docs.google.com/file/d/0B8XXo8Tve1cxT2pPU1hfZFNZUFk/edit
 +
* http://arminstraub.com/math/pslq-intro
  
 
+
  
 
+
==사전 형태의 자료==
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">재미있는 사실</h5>
 
 
 
 
 
 
 
* Math Overflow http://mathoverflow.net/search?q=
 
* 네이버 지식인 http://kin.search.naver.com/search.naver?where=kin_qna&query=
 
 
 
 
 
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">역사</h5>
 
 
 
 
 
 
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
* [[수학사연표 (역사)|수학사연표]]
 
*  
 
 
 
 
 
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">메모</h5>
 
 
 
http://blog.naver.com/j3b5mj2224/80067439599
 
 
 
 
 
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련된 항목들</h5>
 
 
 
 
 
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">수학용어번역</h5>
 
 
 
* 단어사전 http://www.google.com/dictionary?langpair=en|ko&q=
 
* 발음사전 http://www.forvo.com/search/
 
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 
* [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교]
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 
 
 
 
 
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">사전 형태의 자료</h5>
 
  
 
* http://ko.wikipedia.org/wiki/
 
* http://ko.wikipedia.org/wiki/
 
* [http://en.wikipedia.org/wiki/Bailey%E2%80%93Borwein%E2%80%93Plouffe_formula http://en.wikipedia.org/wiki/Bailey–Borwein–Plouffe_formula]
 
* [http://en.wikipedia.org/wiki/Bailey%E2%80%93Borwein%E2%80%93Plouffe_formula http://en.wikipedia.org/wiki/Bailey–Borwein–Plouffe_formula]
* http://en.wikipedia.org/wiki/
+
* http://en.wikipedia.org/wiki/Spigot_algorithm
* http://www.wolframalpha.com/input/?i=Bailey-Borwein-Plouffe+formula
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://www.research.att.com/~njas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]<br>
 
** http://www.research.att.com/~njas/sequences/?q=
 
 
 
 
 
  
 
+
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련논문</h5>
+
==관련논문==
 +
* Kunle Adegoke, A non-PSLQ route to BBP-type formulas, arXiv:1603.08209[math.NT], March 27 2016, http://arxiv.org/abs/1603.08209v1, 10.5539/jmr.v2n2p56, http://dx.doi.org/10.5539/jmr.v2n2p56, Journal of Mathematics Research (2010) 2(2):56-64
  
 
* [http://www.cs.cmu.edu/~adamchik/articles/pi/pi.htm Pi: A 2000-Year Search Changes Direction]
 
* [http://www.cs.cmu.edu/~adamchik/articles/pi/pi.htm Pi: A 2000-Year Search Changes Direction]
* [http://dx.doi.org/http://dx.doi.org/10.1090%2FS0025-5718-97-00856-9 On the rapid computation of various polylogarithmic constants]<br>
+
* [http://dx.doi.org/http://dx.doi.org/10.1090%2FS0025-5718-97-00856-9 On the rapid computation of various polylogarithmic constants]
**  David Bailey; Peter Borwein; Simon Plouffe.Journal: Math. Comp. 66 (1997), 903-913.<br>
+
**  David Bailey; Peter Borwein; Simon Plouffe.Journal: Math. Comp. 66 (1997), 903-913.
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://www.ams.org/mathscinet
 
* http://dx.doi.org/
 
 
 
 
 
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련도서</h5>
 
 
 
*  도서내검색<br>
 
** http://books.google.com/books?q=
 
** http://book.daum.net/search/contentSearch.do?query=
 
*  도서검색<br>
 
** http://books.google.com/books?q=
 
** http://book.daum.net/search/mainSearch.do?query=
 
** http://book.daum.net/search/mainSearch.do?query=
 
 
 
 
 
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련기사</h5>
 
 
 
*  네이버 뉴스 검색 (키워드 수정)<br>
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
 
 
 
 
 
 
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">블로그</h5>
+
[[분류:원주율]]
  
*  구글 블로그 검색<br>
+
==메타데이터==
** http://blogsearch.google.com/blogsearch?q=
+
===위키데이터===
* [http://navercast.naver.com/science/list 네이버 오늘의과학]
+
* ID :  [https://www.wikidata.org/wiki/Q803807 Q803807]
* [http://math.dongascience.com/ 수학동아]
+
===Spacy 패턴 목록===
* [http://www.ams.org/mathmoments/ Mathematical Moments from the AMS]
+
* [{'LOWER': 'bailey'}, {'OP': '*'}, {'LOWER': 'borwein'}, {'OP': '*'}, {'LOWER': 'plouffe'}, {'LEMMA': 'formula'}]
* [http://betterexplained.com/ BetterExplained]
 

2021년 2월 17일 (수) 05:56 기준 최신판

개요

  • 원주율의 값을 16진수로 표현할 때, 각 자리에 어떤 값이 오는지를 구할 수 있게 해주는 공식
  • Spigot 알고리즘의 대표적인 예이다
  • 다음 공식에 의하여 얻어짐

\[\pi = \sum_{k = 0}^{\infty}\frac{1}{16^k} \left( \frac{4}{8k + 1} - \frac{2}{8k + 4} - \frac{1}{8k + 5} - \frac{1}{8k + 6} \right)\label{bbp}\]



공식의 증명

\ref{bbp}가 다음의 등식과 동치이다 \[\pi=\int_{0}^{1/\sqrt{2}}\frac{4\sqrt{2}-8x^3-4\sqrt{2}x^4-8x^5}{1-x^8}\,dx\]

다음을 이용하면 된다 \[ \begin{align} \quad \int_{0}^{1/\sqrt{2}}\frac{x^{k-1}}{1-x^8}\,dx & = \int_{0}^{1/\sqrt{2}}\sum_{i=0}^{\infty}x^{k-1+8i}\,dx \\ {} & = \frac{1}{\sqrt{2}^k}\sum_{i=0}^{\infty}\frac{1}{16^{i}(8i+k)} \end{align} \] ■



원주율의 16진법 전개




메모



관련된 항목들

계산 리소스


사전 형태의 자료


관련논문

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'bailey'}, {'OP': '*'}, {'LOWER': 'borwein'}, {'OP': '*'}, {'LOWER': 'plouffe'}, {'LEMMA': 'formula'}]