"정규소수 (regular prime)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지를 개설하였습니다.)
 
 
(사용자 2명의 중간 판 23개는 보이지 않습니다)
1번째 줄: 1번째 줄:
 +
==개요==
  
 +
* <math>p</math>-원분체의 [[수체의 유수 (class number)|유수]] 를 나누지 않는 소수 <math>p</math>를 정규소수라 함
 +
*  쿰머는 정규소수  <math>p</math>에 대하여 [[페르마의 마지막 정리]] 즉,  <math>x^p+y^p=z^p</math>의 정수해는 <math>xyz=0</math> 를 만족시킴을 증명하였다
 +
 +
 +
==쿰머의 판정법==
 +
;정리 (쿰머)
 +
홀수인 소수 <math>p</math>가 <math>k = 2, 4, 6,\cdots, p-3</math>에 대하여  [[베르누이 수]] <math>B_k</math>의 분자를 나누지 않으면 <math>p</math>는 정규소수이다.
 +
 +
 +
==정규소수와 비정규소수==
 +
 +
*  p-원분체의 class number가 1이면, p는 정규소수이다.
 +
*  23의 경우
 +
**  23-원분체의 class number는 3 이고, 23은 3을 나누지 않으므로 23은 정규소수이다.
 +
*  37의 경우
 +
**  가장 작은 비정규소수
 +
**  37-원분체의 class number는 37이다
 +
*  비정규소수로 이루어진 수열
 +
** 37, 59, 67, 101, 103, 131, 149, ...
 +
** [http://www.research.att.com/%7Enjas/sequences/A000928 http://www.research.att.com/~njas/sequences/A000928]
 +
*  원분체의 class number
 +
** [http://www.research.att.com/%7Enjas/sequences/A055513 http://www.research.att.com/~njas/sequences/A055513]
 +
 +
 +
 +
 +
 +
==분포에 대한 추측==
 +
 +
*  '소수의 61%는 정규소수이다'
 +
*  미해결문제
 +
 +
 +
 +
 +
 +
==역사==
 +
 +
* [[수학사 연표]]
 +
 +
 +
 +
 +
 +
==관련된 항목들==
 +
* [[원분체의 유수]]
 +
* [[원분다항식(cyclotomic polynomial)]]
 +
 +
 +
 +
 +
==수학용어번역==
 +
 +
* regular 정칙, 정규
 +
* 정규소수 또는 정칙소수로 번역이 가능할 듯
 +
 +
 +
 +
 +
 +
==사전 형태의 자료==
 +
 +
* http://ko.wikipedia.org/wiki/
 +
* http://en.wikipedia.org/wiki/Regular_prime
 +
* http://en.wikipedia.org/wiki/Ernst_Kummer
 +
* http://en.wikipedia.org/wiki/cyclotomic_fields
 +
 +
 +
 +
 +
==관련도서==
 +
 +
*  The Book of Prime Number Records
 +
** P. Ribenboim,  Springer-Verlag, NY, 2nd ed., 1989, p. 137.
 +
 +
[[분류:소수]]
 +
 +
==메타데이터==
 +
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q426491 Q426491]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'regular'}, {'LEMMA': 'prime'}]

2021년 2월 17일 (수) 04:58 기준 최신판

개요

  • \(p\)-원분체의 유수 를 나누지 않는 소수 \(p\)를 정규소수라 함
  • 쿰머는 정규소수 \(p\)에 대하여 페르마의 마지막 정리 즉, \(x^p+y^p=z^p\)의 정수해는 \(xyz=0\) 를 만족시킴을 증명하였다


쿰머의 판정법

정리 (쿰머)

홀수인 소수 \(p\)가 \(k = 2, 4, 6,\cdots, p-3\)에 대하여 베르누이 수 \(B_k\)의 분자를 나누지 않으면 \(p\)는 정규소수이다.


정규소수와 비정규소수



분포에 대한 추측

  • '소수의 61%는 정규소수이다'
  • 미해결문제



역사



관련된 항목들



수학용어번역

  • regular 정칙, 정규
  • 정규소수 또는 정칙소수로 번역이 가능할 듯



사전 형태의 자료



관련도서

  • The Book of Prime Number Records
    • P. Ribenboim, Springer-Verlag, NY, 2nd ed., 1989, p. 137.

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'regular'}, {'LEMMA': 'prime'}]