"팩토리얼(factorial)"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) |
Pythagoras0 (토론 | 기여) |
||
(같은 사용자의 중간 판 하나는 보이지 않습니다) | |||
60번째 줄: | 60번째 줄: | ||
[[분류:조합수학]] | [[분류:조합수학]] | ||
[[분류:수열]] | [[분류:수열]] | ||
+ | |||
+ | ==메타데이터== | ||
+ | ===위키데이터=== | ||
+ | * ID : [https://www.wikidata.org/wiki/Q120976 Q120976] | ||
+ | ===Spacy 패턴 목록=== | ||
+ | * [{'LEMMA': 'factorial'}] | ||
+ | * [{'LOWER': 'factorial'}, {'LEMMA': 'function'}] | ||
+ | * [{'LEMMA': '!'}] | ||
+ | * [{'LOWER': 'n'}, {'LEMMA': '!'}] |
2021년 2월 17일 (수) 06:05 기준 최신판
개요
- \(n!=n\cdot (n-1)\cdots 2\cdot 1\)
- 이항계수와 조합 에 등장, 조합론에서 중요한 역할
- 감마함수는 자연수에 정의된 팩토리얼 함수의 정의역을 복소수로 확장하는 함수이다
스털링 공식
- 스털링 공식\[ n!=\sqrt{2\pi n}\left({n\over e}\right)^n \left( 1 +{1\over12n} +{1\over288n^2} -{139\over51840n^3} -{571\over2488320n^4} + \cdots \right)\]
팩토리얼의 q-analogue
역사
메모
관련된 항목들
사전 형태의 자료
메타데이터
위키데이터
- ID : Q120976
Spacy 패턴 목록
- [{'LEMMA': 'factorial'}]
- [{'LOWER': 'factorial'}, {'LEMMA': 'function'}]
- [{'LEMMA': '!'}]
- [{'LOWER': 'n'}, {'LEMMA': '!'}]