"폴리로그 함수(polylogarithm)"의 두 판 사이의 차이
		
		
		
		
		
		둘러보기로 가기
		검색하러 가기
		
				
		
		
	
Pythagoras0 (토론 | 기여)  | 
				Pythagoras0 (토론 | 기여)   | 
				||
| (같은 사용자의 중간 판 12개는 보이지 않습니다) | |||
| 38번째 줄: | 38번째 줄: | ||
==메모==  | ==메모==  | ||
| − | + | * Scheider, René. “The de Rham Realization of the Elliptic Polylogarithm in Families.” arXiv:1408.3819 [math], August 17, 2014. http://arxiv.org/abs/1408.3819.  | |
| + | * Jameson, [http://www.maths.lancs.ac.uk/~jameson/polylog.pdf Polylogarithms, multiple zeta values, and the series of Hjortnaes and Comtet]  | ||
* http://mathoverflow.net/questions/25428/what-is-special-about-polylogarithms-that-leads-to-so-many-interesting-identities  | * http://mathoverflow.net/questions/25428/what-is-special-about-polylogarithms-that-leads-to-so-many-interesting-identities  | ||
| − | |||
* http://books.google.com/books?hl=ko&lr=&id=9G3nlZUDAhkC&oi=fnd&pg=PA391&dq=The+classical+polylogarithms,+algebraic+K-theory&ots=zst2m387di&sig=kNRuqZp_mUdFDXScW41qNbprgps#v=onepage&q=&f=false  | * http://books.google.com/books?hl=ko&lr=&id=9G3nlZUDAhkC&oi=fnd&pg=PA391&dq=The+classical+polylogarithms,+algebraic+K-theory&ots=zst2m387di&sig=kNRuqZp_mUdFDXScW41qNbprgps#v=onepage&q=&f=false  | ||
* [http://www.maths.dur.ac.uk/%7Edma0hg/kyoto.pdf Functional equations of polylogarithms] Herbert Gangl  | * [http://www.maths.dur.ac.uk/%7Edma0hg/kyoto.pdf Functional equations of polylogarithms] Herbert Gangl  | ||
* [http://www.maths.dur.ac.uk/%7Edma0hg/kyoto.pdf http://www.maths.dur.ac.uk/~dma0hg/kyoto.pdf]  | * [http://www.maths.dur.ac.uk/%7Edma0hg/kyoto.pdf http://www.maths.dur.ac.uk/~dma0hg/kyoto.pdf]  | ||
* [http://www.maths.dur.ac.uk/%7Ed40ppt/pdf/John_Rhodes.pdf http://www.maths.dur.ac.uk/~d40ppt/pdf/John_Rhodes.pdf]  | * [http://www.maths.dur.ac.uk/%7Ed40ppt/pdf/John_Rhodes.pdf http://www.maths.dur.ac.uk/~d40ppt/pdf/John_Rhodes.pdf]  | ||
| − | |||
| − | |||
==관련된 항목들==  | ==관련된 항목들==  | ||
| 63번째 줄: | 61번째 줄: | ||
==리뷰논문, 에세이, 강의노트==  | ==리뷰논문, 에세이, 강의노트==  | ||
| − | + | * Vergu, C. “Polylogarithm Identities, Cluster Algebras and the N=4 Supersymmetric Theory.” arXiv:1512.08113 [hep-Th], December 26, 2015. http://arxiv.org/abs/1512.08113.  | |
* John R. Rhodes [http://www.mathematik.hu-berlin.de/%7Ekreimer/Polylogarithms.pdf Polylogarithms] ,2008  | * John R. Rhodes [http://www.mathematik.hu-berlin.de/%7Ekreimer/Polylogarithms.pdf Polylogarithms] ,2008  | ||
| − | * Richard   | + | * Bowman, Douglas, and David M. Bradley. “Multiple Polylogarithms: A Brief Survey.” arXiv:math/0310062, October 5, 2003. http://arxiv.org/abs/math/0310062.  | 
| + | * Hain, Richard. “Classical Polylogarithms.” arXiv:alg-geom/9202022, February 20, 1992. http://arxiv.org/abs/alg-geom/9202022.  | ||
| + | * Askey, Richard. 1982. “Book Review: Polylogarithms and Associated Functions.” American Mathematical Society. Bulletin. New Series 6 (2): 248–251. doi:10.1090/S0273-0979-1982-14998-9.  | ||
* Some wonderful formulas ... an introduction to polylogarithms A.J. Van der Poorten, Queen's papers in Pure and Applied Mathematics, 54 (1979), 269-286 (http://www.ega-math.narod.ru/Apery2.htm )  | * Some wonderful formulas ... an introduction to polylogarithms A.J. Van der Poorten, Queen's papers in Pure and Applied Mathematics, 54 (1979), 269-286 (http://www.ega-math.narod.ru/Apery2.htm )  | ||
| − | |||
| − | |||
| − | |||
==관련논문==  | ==관련논문==  | ||
| − | * [http://arxiv.org/abs/math/  | + | * Ngoc Hoang, Gérard Duchamp, Hoang Ngoc Minh, The algebra of Kleene stars of the plane and polylogarithms, arXiv:1602.02801[math.CO], February 05 2016, http://arxiv.org/abs/1602.02801v2, 10.1145/1235, http://dx.doi.org/10.1145/1235  | 
| − | * [http://arxiv.org/abs/math.CA/9803067 Polylogarithmic ladders, hypergeometric series and the ten millionth digits of   | + | * Kenji Sakugawa, Shin-ichiro Seki, Finite and étale polylogarithms, http://arxiv.org/abs/1603.05811v1  | 
| + | * Frellesvig, Hjalte, Damiano Tommasini, and Christopher Wever. “On the Reduction of Generalized Polylogarithms to <math>\text{Li}_n</math> and <math>\text{Li}_{2,2}</math> and on the Evaluation Thereof.” arXiv:1601.02649 [hep-Ph], January 11, 2016. http://arxiv.org/abs/1601.02649.  | ||
| + | * Henn, Johannes M., Alexander V. Smirnov, and Vladimir A. Smirnov. “Evaluating Multiple Polylogarithm Values at Sixth Roots of Unity up to Weight Six.” arXiv:1512.08389 [hep-Ph, Physics:hep-Th, Physics:math-Ph], December 28, 2015. http://arxiv.org/abs/1512.08389.  | ||
| + | * Rudenko, Daniil. “On the Functional Equations for Polylogarithms in One Variable.” arXiv:1511.09110 [math], November 2, 2015. http://arxiv.org/abs/1511.09110.  | ||
| + | * Sakugawa, Kenji, and Shin-ichiro Seki. “On Functional Equations of Finite Multiple Polylogarithms.” arXiv:1509.07653 [math], September 25, 2015. http://arxiv.org/abs/1509.07653.  | ||
| + | * [http://arxiv.org/abs/math.CA/9803067 Polylogarithmic ladders, hypergeometric series and the ten millionth digits of <math>\zeta(3)</math> and <math>\zeta(5)</math>] D. J. Broadhurst, 1998  | ||
* [http://dx.doi.org/http://dx.doi.org/10.1090%2FS0025-5718-97-00856-9 On the rapid computation of various polylogarithmic constants] David Bailey; Peter Borwein; Simon Plouffe.Journal: Math. Comp. 66 (1997), 903-913.  | * [http://dx.doi.org/http://dx.doi.org/10.1090%2FS0025-5718-97-00856-9 On the rapid computation of various polylogarithmic constants] David Bailey; Peter Borwein; Simon Plouffe.Journal: Math. Comp. 66 (1997), 903-913.  | ||
*  Ramakrishnan, Analogs of the Bloch-Wigner function for higher polylogarithms, 1986  | *  Ramakrishnan, Analogs of the Bloch-Wigner function for higher polylogarithms, 1986  | ||
| − | *  The classical polylogarithms, algebraic K-theory and   | + | *  The classical polylogarithms, algebraic K-theory and <math>\zeta_F(n)</math>, Goncharov, A. Proc. of the Gelfand Seminar, Birkhauser, 113-135  | 
[[분류:다이로그]]  | [[분류:다이로그]]  | ||
| + | |||
| + | ==메타데이터==  | ||
| + | ===위키데이터===  | ||
| + | * ID :  [https://www.wikidata.org/wiki/Q1238449 Q1238449]  | ||
| + | ===Spacy 패턴 목록===  | ||
| + | * [{'LEMMA': 'polylogarithm'}]  | ||
2021년 2월 17일 (수) 05:06 기준 최신판
개요
- 다이로그 함수(dilogarithm) 의 일반화
 
정의
\[\operatorname{Li}_r(z)= \sum_{n=1}^\infty {z^n \over n^r}=\int_0^z \operatorname{Li}_{r-1}(t) \frac{dt}{t}\] \[\operatorname{Li}_3(z) =\int_0^z \operatorname{Li}_2(t) \frac{dt}{t}\]
 
 
로그함수
\[-\log (1-z)=z+\frac{z^2}{2}+\frac{z^3}{3}+\frac{z^4}{4}+\frac{z^5}{5}+\cdots\]
 
 
역사
메모
- Scheider, René. “The de Rham Realization of the Elliptic Polylogarithm in Families.” arXiv:1408.3819 [math], August 17, 2014. http://arxiv.org/abs/1408.3819.
 - Jameson, Polylogarithms, multiple zeta values, and the series of Hjortnaes and Comtet
 - http://mathoverflow.net/questions/25428/what-is-special-about-polylogarithms-that-leads-to-so-many-interesting-identities
 - http://books.google.com/books?hl=ko&lr=&id=9G3nlZUDAhkC&oi=fnd&pg=PA391&dq=The+classical+polylogarithms,+algebraic+K-theory&ots=zst2m387di&sig=kNRuqZp_mUdFDXScW41qNbprgps#v=onepage&q=&f=false
 - Functional equations of polylogarithms Herbert Gangl
 - http://www.maths.dur.ac.uk/~dma0hg/kyoto.pdf
 - http://www.maths.dur.ac.uk/~d40ppt/pdf/John_Rhodes.pdf
 
관련된 항목들
 
사전 형태의 자료
 
리뷰논문, 에세이, 강의노트
- Vergu, C. “Polylogarithm Identities, Cluster Algebras and the N=4 Supersymmetric Theory.” arXiv:1512.08113 [hep-Th], December 26, 2015. http://arxiv.org/abs/1512.08113.
 - John R. Rhodes Polylogarithms ,2008
 - Bowman, Douglas, and David M. Bradley. “Multiple Polylogarithms: A Brief Survey.” arXiv:math/0310062, October 5, 2003. http://arxiv.org/abs/math/0310062.
 - Hain, Richard. “Classical Polylogarithms.” arXiv:alg-geom/9202022, February 20, 1992. http://arxiv.org/abs/alg-geom/9202022.
 - Askey, Richard. 1982. “Book Review: Polylogarithms and Associated Functions.” American Mathematical Society. Bulletin. New Series 6 (2): 248–251. doi:10.1090/S0273-0979-1982-14998-9.
 - Some wonderful formulas ... an introduction to polylogarithms A.J. Van der Poorten, Queen's papers in Pure and Applied Mathematics, 54 (1979), 269-286 (http://www.ega-math.narod.ru/Apery2.htm )
 
관련논문
- Ngoc Hoang, Gérard Duchamp, Hoang Ngoc Minh, The algebra of Kleene stars of the plane and polylogarithms, arXiv:1602.02801[math.CO], February 05 2016, http://arxiv.org/abs/1602.02801v2, 10.1145/1235, http://dx.doi.org/10.1145/1235
 - Kenji Sakugawa, Shin-ichiro Seki, Finite and étale polylogarithms, http://arxiv.org/abs/1603.05811v1
 - Frellesvig, Hjalte, Damiano Tommasini, and Christopher Wever. “On the Reduction of Generalized Polylogarithms to \(\text{Li}_n\) and \(\text{Li}_{2,2}\) and on the Evaluation Thereof.” arXiv:1601.02649 [hep-Ph], January 11, 2016. http://arxiv.org/abs/1601.02649.
 - Henn, Johannes M., Alexander V. Smirnov, and Vladimir A. Smirnov. “Evaluating Multiple Polylogarithm Values at Sixth Roots of Unity up to Weight Six.” arXiv:1512.08389 [hep-Ph, Physics:hep-Th, Physics:math-Ph], December 28, 2015. http://arxiv.org/abs/1512.08389.
 - Rudenko, Daniil. “On the Functional Equations for Polylogarithms in One Variable.” arXiv:1511.09110 [math], November 2, 2015. http://arxiv.org/abs/1511.09110.
 - Sakugawa, Kenji, and Shin-ichiro Seki. “On Functional Equations of Finite Multiple Polylogarithms.” arXiv:1509.07653 [math], September 25, 2015. http://arxiv.org/abs/1509.07653.
 - Polylogarithmic ladders, hypergeometric series and the ten millionth digits of \(\zeta(3)\) and \(\zeta(5)\) D. J. Broadhurst, 1998
 - On the rapid computation of various polylogarithmic constants David Bailey; Peter Borwein; Simon Plouffe.Journal: Math. Comp. 66 (1997), 903-913.
 - Ramakrishnan, Analogs of the Bloch-Wigner function for higher polylogarithms, 1986
 - The classical polylogarithms, algebraic K-theory and \(\zeta_F(n)\), Goncharov, A. Proc. of the Gelfand Seminar, Birkhauser, 113-135
 
메타데이터
위키데이터
- ID : Q1238449
 
Spacy 패턴 목록
- [{'LEMMA': 'polylogarithm'}]