"대수적수론"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
7번째 줄: | 7번째 줄: | ||
<h5>대수적수와 대수적정수</h5> | <h5>대수적수와 대수적정수</h5> | ||
− | * 유리수 계수방정식은 적당한 정수를 곱하여 다음과 같은 형태의 정수계수방정식으로 표현할 수도 있음.<br><math>a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \cdots + a_1 x + a_0 = 0, a_i \in \mathbb{Z}</math><br> | + | * 복소수중에서 적당한 유리수 계수방정식을 만족시키는 수를 대수적수라 함<br> |
− | * 복소수 중에서 어떠한 정수계수방정식도 만족시킬 수 없는 수를 초월수라 해도 무방<br> | + | ** 유리수 계수방정식은 적당한 정수를 곱하여 다음과 같은 형태의 정수계수방정식으로 표현할 수도 있음.<br><math>a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \cdots + a_1 x + a_0 = 0, a_i \in \mathbb{Z}</math><br> |
+ | ** 복소수 중에서 어떠한 정수계수방정식도 만족시킬 수 없는 수를 초월수라 해도 무방<br> | ||
+ | |||
+ | * 대수적정수는 최고차항의 계수가 1인 정수계수다항식을 만족시키는 대수적수<br> | ||
+ | ** <math>x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \cdots + a_1 x + a_0 = 0, a_i \in \mathbb{Z}</math> | ||
+ | |||
+ | |||
47번째 줄: | 53번째 줄: | ||
<h5>관련된 대학원 과목 또는 더 공부하면 좋은 것들</h5> | <h5>관련된 대학원 과목 또는 더 공부하면 좋은 것들</h5> | ||
− | + | * [[무리수와 초월수|초월수]] | |
67번째 줄: | 73번째 줄: | ||
* [http://ko.wikipedia.org/wiki/%EB%8C%80%EC%88%98%EC%A0%81_%EC%88%98 http://ko.wikipedia.org/wiki/대수적_수] | * [http://ko.wikipedia.org/wiki/%EB%8C%80%EC%88%98%EC%A0%81_%EC%88%98 http://ko.wikipedia.org/wiki/대수적_수] | ||
* http://en.wikipedia.org/wiki/algebraic_number_theory | * http://en.wikipedia.org/wiki/algebraic_number_theory | ||
+ | * http://en.wikipedia.org/wiki/Splitting_of_prime_ideals_in_Galois_extensions | ||
+ | * http://en.wikipedia.org/wiki/absolute_Galois_group | ||
* [http://www.jstor.org/stable/2691370 The Roots of Commutative Algebra in Algebraic Number Theory]<br> | * [http://www.jstor.org/stable/2691370 The Roots of Commutative Algebra in Algebraic Number Theory]<br> | ||
** Israel Kleiner | ** Israel Kleiner |
2009년 7월 31일 (금) 14:28 판
간단한 요약
- 대수적수와 대수적정수의 성질에 대해 연구하는 정수론의 분야
대수적수와 대수적정수
- 복소수중에서 적당한 유리수 계수방정식을 만족시키는 수를 대수적수라 함
- 유리수 계수방정식은 적당한 정수를 곱하여 다음과 같은 형태의 정수계수방정식으로 표현할 수도 있음.
\(a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \cdots + a_1 x + a_0 = 0, a_i \in \mathbb{Z}\) - 복소수 중에서 어떠한 정수계수방정식도 만족시킬 수 없는 수를 초월수라 해도 무방
- 유리수 계수방정식은 적당한 정수를 곱하여 다음과 같은 형태의 정수계수방정식으로 표현할 수도 있음.
- 대수적정수는 최고차항의 계수가 1인 정수계수다항식을 만족시키는 대수적수
- \(x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \cdots + a_1 x + a_0 = 0, a_i \in \mathbb{Z}\)
선수 과목 또는 알고 있으면 좋은 것들
다루는 대상
중요한 개념 및 정리
- 주어진 prime ideal은 체확장을 통해 어떻게 쪼개지는가
- 디리클레 unit theorem
- Class number의 유한성
유명한 정리 혹은 생각할만한 문제
다른 과목과의 관련성
관련된 대학원 과목 또는 더 공부하면 좋은 것들
표준적인 교과서
추천도서 및 보조교재
참고할만한 자료
- http://ko.wikipedia.org/wiki/대수적_수
- http://en.wikipedia.org/wiki/algebraic_number_theory
- http://en.wikipedia.org/wiki/Splitting_of_prime_ideals_in_Galois_extensions
- http://en.wikipedia.org/wiki/absolute_Galois_group
- The Roots of Commutative Algebra in Algebraic Number Theory
- Israel Kleiner
- Mathematics Magazine, Vol. 68, No. 1 (Feb., 1995), pp. 3-15
- Algebraic Numbers
- B.Mazur
- from 'The Princeton companion to mathematics'
- http://en.wikipedia.org/wiki/
- http://www.wolframalpha.com/input/?i=
- http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=
- http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=
- 다음백과사전 http://enc.daum.net/dic100/search.do?q=
- 대한수학회 수학 학술 용어집
관련기사
- 네이버 뉴스 검색 (키워드 수정)
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
블로그
- 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q=
- 트렌비 블로그 검색 http://www.trenb.com/search.qst?q=
이미지 검색
- http://commons.wikimedia.org/w/index.php?title=Special%3ASearch&search=
- http://images.google.com/images?q=
- http://www.artchive.com