"대수적수론"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
35번째 줄: | 35번째 줄: | ||
* 주어진 prime ideal은 체확장을 통해 어떻게 쪼개지는가 | * 주어진 prime ideal은 체확장을 통해 어떻게 쪼개지는가 | ||
* 디리클레 unit theorem | * 디리클레 unit theorem | ||
− | * Class number의 | + | * Class number의 유한성 <br> |
+ | ** [[수체의 class number]] | ||
84번째 줄: | 85번째 줄: | ||
* http://en.wikipedia.org/wiki/ | * http://en.wikipedia.org/wiki/ | ||
* http://www.wolframalpha.com/input/?i= | * http://www.wolframalpha.com/input/?i= | ||
− | |||
− | |||
− | |||
− | |||
− | + | <br> | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
2009년 8월 1일 (토) 02:06 판
간단한 요약
- 대수적수와 대수적정수의 성질에 대해 연구하는 정수론의 분야
대수적수와 대수적정수
- 복소수중에서 적당한 유리수 계수방정식을 만족시키는 수를 대수적수라 함
- 유리수 계수방정식은 적당한 정수를 곱하여 다음과 같은 형태의 정수계수방정식으로 표현할 수도 있음.
\(a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \cdots + a_1 x + a_0 = 0, a_i \in \mathbb{Z}\) - 복소수 중에서 어떠한 정수계수방정식도 만족시킬 수 없는 수를 초월수라 해도 무방
- 유리수 계수방정식은 적당한 정수를 곱하여 다음과 같은 형태의 정수계수방정식으로 표현할 수도 있음.
- 대수적정수는 최고차항의 계수가 1인 정수계수다항식을 만족시키는 대수적수
- \(x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \cdots + a_1 x + a_0 = 0, a_i \in \mathbb{Z}\)
선수 과목 또는 알고 있으면 좋은 것들
다루는 대상
중요한 개념 및 정리
- 주어진 prime ideal은 체확장을 통해 어떻게 쪼개지는가
- 디리클레 unit theorem
- Class number의 유한성
유명한 정리 혹은 생각할만한 문제
다른 과목과의 관련성
관련된 대학원 과목 또는 더 공부하면 좋은 것들
표준적인 교과서
추천도서 및 보조교재
참고할만한 자료
- http://ko.wikipedia.org/wiki/대수적_수
- http://en.wikipedia.org/wiki/algebraic_number_theory
- http://en.wikipedia.org/wiki/Splitting_of_prime_ideals_in_Galois_extensions
- http://en.wikipedia.org/wiki/absolute_Galois_group
- The Roots of Commutative Algebra in Algebraic Number Theory
- Israel Kleiner
- Mathematics Magazine, Vol. 68, No. 1 (Feb., 1995), pp. 3-15
- Algebraic Numbers
- B.Mazur
- from 'The Princeton companion to mathematics'
블로그
- 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q=
- 트렌비 블로그 검색 http://www.trenb.com/search.qst?q=
이미지 검색
- http://commons.wikimedia.org/w/index.php?title=Special%3ASearch&search=
- http://images.google.com/images?q=
- http://www.artchive.com