"대칭군 (symmetric group)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
1번째 줄: 1번째 줄:
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5>
  
 
 
 
 
5번째 줄: 5번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">개요</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요</h5>
  
 
* 원소의 개수가 n인 집합의 전단사함수들의 모임으로 군을 이룸
 
* 원소의 개수가 n인 집합의 전단사함수들의 모임으로 군을 이룸
15번째 줄: 15번째 줄:
 
 
 
 
  
<h5 style="line-height: 2em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px;">presentation</h5>
+
<h5 style="margin: 0px; line-height: 2em;">presentation</h5>
  
 
*  생성원 <math>\sigma_1, \ldots, \sigma_{n-1}</math><br>
 
*  생성원 <math>\sigma_1, \ldots, \sigma_{n-1}</math><br>
25번째 줄: 25번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">상위 주제</h5>
+
 
  
* [[추상대수학]]<br>
+
이제 치환이라는 말을 정의하자. 치환이란 우리의 경우에는 네 개의 원소로 구성된 집합 <math>\{\alpha_1,\alpha_2,\alpha_3,\alpha_4\}</math>에 정의되는 전단사함수를 말한다. <math>\alpha_1</math>을 <math>\alpha_3</math>으로 보내고, <math>\alpha_3</math>을 <math>\alpha_1</math>로 보내고, <math>\alpha_2</math>와 <math>\alpha_4</math>는 그대로 주는 치환을 간단히 다음과 같이 쓰자.
 +
 
 +
<math>\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 &  4\end{pmatrix}</math>
  
<br>
+
'''방정식의 해의 치환군은 해의 위치를 서로 바꿔주는 치환 중에서, 해들이 만족시키는 방정식의 대수적관계 (더 정확히는 유리계수다항식) 를 보존하는 것들로 정의'''된다.
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">재미있는 사실</h5>
+
가령 위의 네 해는 <math>\alpha_1\alpha_4=\alpha_2\alpha_3=1</math>, <math>\alpha_1^2\alpha_3=1</math>와 같은 대수적관계들을 만족시킨다. 그러면 치환군의 원소는 어떤 것들이 있을지 생각해볼 수 있겠다.
  
* <math>S_6</math>는 항등원이 아닌 outer automorphism을 가짐<br>
+
<math>\tau=\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 3 &  4\end{pmatrix}</math> 는 치환군의 원소가 될 수 없는데, <math>\alpha_1\alpha_4=1</math> 임에 반하여, <math>\tau(\alpha_1)\tau(\alpha_4)=\alpha_2\alpha_4\neq 1</math>이기 때문이다.(<math>\alpha_i=\zeta^i</math> 임을 기억하자)
**  예외적인 경우<br>
 
  
 
 
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">역사</h5>
+
<math>\alpha_1\alpha_4=\alpha_2\alpha_3=1</math>라는 조건으로부터, <math>\{1,4\}</math>와 <math>\{2,3\}</math> 이 쌍으로 움직여야 한다는 것을 알 수 있다. 따라서 다음과 같은 치환들만이 치환군의 원소 후보가 될 수 있다.
 +
 
 +
<math>\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 &  4\end{pmatrix}</math>,<math>\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 2 &  4\end{pmatrix}</math>,<math>\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 &  3\end{pmatrix}</math>,<math>\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 &  3\end{pmatrix}</math> ,<math>\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 4 &  2\end{pmatrix}</math>,<math>\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 &  2\end{pmatrix}</math>,<math>\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 2 & 3 &  1\end{pmatrix}</math>,<math>\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 &  1\end{pmatrix}</math>
 +
 
 +
그러나 여기서 <math>\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 2 &  4\end{pmatrix}</math>와 같은 경우는 치환군의 원소가 될 수 없는데,  <math>\alpha_1^2\alpha_3=1</math> 임에 반하여, <math>\tau(\alpha_1)^2\tau(\alpha_3)=\alpha_1^2\alpha_2\neq 1</math>이기 때문이다.(<math>\alpha_i=\zeta^i</math> 이므로)
  
* [[수학사연표 (역사)|수학사연표]]<br>  <br>
+
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">많이 나오는 질문과 답변</h5>
+
결국엔 다음의 네 가지 치환만이 치환군의 원소가 될 수 있게 된다.
  
* 네이버 지식인<br>
+
<math>\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 &  4\end{pmatrix}</math>,<math>\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 &  3\end{pmatrix}</math> ,<math>\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 4 &  2\end{pmatrix}</math>,<math>\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1\end{pmatrix}</math>
** http://kin.search.naver.com/search.naver?where=kin_qna&query=
 
** http://kin.search.naver.com/search.naver?where=kin_qna&query=
 
** http://kin.search.naver.com/search.naver?where=kin_qna&query=
 
** http://kin.search.naver.com/search.naver?where=kin_qna&query=
 
** http://kin.search.naver.com/search.naver?where=kin_qna&query=
 
  
 
 
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련된 고교수학 또는 대학수학</h5>
+
<math>\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 &  3\end{pmatrix}</math>는 함수이므로, <math>\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 &  3\end{pmatrix}^2</math>는 함수의 합성으로 이해할 수 있다.
 +
 
 +
<math>\sigma=\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 &  3\end{pmatrix}</math> 로 두면,<math>\sigma^2= \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 &  1\end{pmatrix}</math>,  <math>\sigma^3=\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 4 &  2\end{pmatrix}</math>, <math>\sigma^4=\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 &  4\end{pmatrix}</math> 가 되어, 모든 원소가 <math>\sigma</math>로부터 얻어지게 된다.
 +
 
 +
즉 친숙한 군 {차렷, 좌향좌, 우향우, 뒤로돌아}와 비교하자면, <math>\sigma</math>는 좌향좌 또는 우향우와 같은 역할을 방정식의 해에 대하여 하고 있다. 크기가 4인 [[순환군]]이 된다.
  
 
 
 
 
59번째 줄: 63번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련된 다른 주제들</h5>
+
또다른 예를 하나 더 생각해 보자.
  
<br>
+
<math>x^4 - 10x^2 + 1=0</math>의 네 해는 다음과 같이 주어진다.
 +
 
 +
<math>\alpha_1 = \sqrt{2} + \sqrt{3}</math>
 +
 
 +
<math>\alpha_2 = \sqrt{2} - \sqrt{3}</math>
 +
 
 +
<math>\alpha_3 = -\sqrt{2} + \sqrt{3}</math>
 +
 
 +
<math>\alpha_4= -\sqrt{2} - \sqrt{3}</math>
  
 
 
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련도서 및 추천도서</h5>
+
이 경우엔 다음의 네 가지 치환만이 치환군의 원소가 될 수 있게 된다.
 +
 
 +
<math>\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 &  4\end{pmatrix}</math>,<math>\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3\end{pmatrix}</math> ,<math>\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 &  2\end{pmatrix}</math>,<math>\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 &  1\end{pmatrix}</math>
 +
 
 +
그런데
  
*  도서내검색<br>
+
<math>x=\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3\end{pmatrix}</math>로 쓰면, <math>x^2=\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4\end{pmatrix}</math>
** http://books.google.com/books?q=
 
** http://book.daum.net/search/contentSearch.do?query=
 
*  도서검색<br>
 
** http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
 
** http://book.daum.net/search/mainSearch.do?query=
 
  
 
+
<math>y=\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 &  2\end{pmatrix}</math>로 쓰면, <math>y^2=\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 &  4\end{pmatrix}</math>
 +
 
 +
<math>z=\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 &  1\end{pmatrix}</math>로 쓰면, <math>z^2=\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 &  4\end{pmatrix}</math>
 +
 
 +
로 모두 제곱하면 항등원이 되어버리므로, 이 군은 절대로 {차렷, 좌향좌, 우향우, 뒤로돌아}와 같은 구조를 가질 수 없음을 알게 된다.
  
 
 
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">수학용어번역</h5>
+
방정식 <math>z^4+z^3+z^2+z^1+1=0</math>와 <math>x^4 - 10x^2 + 1=0</math> 는 뭔가 질적으로 다르다는 것을 이 치환군은 말해주고 있다.
  
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
+
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid={D6048897-56F9-43D7-8BB6-50B362D1243A}&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 
  
 
 
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">참고할만한 자료</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">상위 주제</h5>
  
* [http://www.jstor.org/stable/2324961 Symmetries of the Cube and Outer Automorphisms of S6]
+
* [[추상대수학]]<br>
* http://ko.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/Symmetric_group
 
* http://en.wikipedia.org/wiki/Automorphisms_of_the_symmetric_and_alternating_groups
 
* http://en.wikipedia.org/wiki/Permutation_groups
 
* http://www.wolframalpha.com/input/?i=
 
* [http://navercast.naver.com/science/list 네이버 오늘의과학]
 
  
 
 
 
 
 +
 +
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">재미있는 사실</h5>
 +
 +
* <math>S_6</math>는 항등원이 아닌 outer automorphism을 가짐<br>
 +
**  예외적인 경우<br>
  
 
 
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련기사</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">역사</h5>
  
네이버 뉴스 검색 (키워드 수정)<br>
+
 <br>[[수학사연표 (역사)|수학사연표]]<br>
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
  
 
 
 
 
113번째 줄: 120번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">블로그</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역</h5>
  
* 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q=
+
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
* 네이버 블로그 검색 http://cafeblog.search.naver.com/search.naver?where=post&sm=tab_jum&query=
+
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
* 트렌비 블로그 검색 http://www.trenb.com/search.qst?q=
+
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
* 스프링노트 http://www.springnote.com/search?stype=all&q=
 
  
 
 
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">이미지 검색</h5>
+
 
  
* http://commons.wikimedia.org/w/index.php?title=Special%3ASearch&search=
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;"> </h5>
* http://images.google.com/images?q=
 
* [http://www.artchive.com/ http://www.artchive.com]
 
  
 
+
사전 형태의 자료
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">동영상</h5>
+
* [http://www.jstor.org/stable/2324961 Symmetries of the Cube and Outer Automorphisms of S6]
 
+
* http://ko.wikipedia.org/wiki/
* http://www.youtube.com/results?search_type=&search_query=
+
* http://en.wikipedia.org/wiki/Symmetric_group
* <br>
+
* http://en.wikipedia.org/wiki/Automorphisms_of_the_symmetric_and_alternating_groups
 +
* http://en.wikipedia.org/wiki/Permutation_groups
 +
* http://www.wolframalpha.com/input/?i=
 +
* [http://navercast.naver.com/science/list 네이버 오늘의과학]

2010년 1월 10일 (일) 15:25 판

이 항목의 스프링노트 원문주소

 

 

개요
  • 원소의 개수가 n인 집합의 전단사함수들의 모임으로 군을 이룸
  • \(n!\) 개의 원소가 존재함
  • 대칭군의 부분군은 치환군(permutation group)이라 불림

 

 

presentation
  • 생성원 \(\sigma_1, \ldots, \sigma_{n-1}\)
  • relations
    • \({\sigma_i}^2 = 1\)
    • \(\sigma_i\sigma_j = \sigma_j\sigma_i \mbox{ if } j \neq i\pm 1\)
    • \(\sigma_i\sigma_{i+1}\sigma_i = \sigma_{i+1}\sigma_i\sigma_{i+1}\\)

 

 

이제 치환이라는 말을 정의하자. 치환이란 우리의 경우에는 네 개의 원소로 구성된 집합 \(\{\alpha_1,\alpha_2,\alpha_3,\alpha_4\}\)에 정의되는 전단사함수를 말한다. \(\alpha_1\)을 \(\alpha_3\)으로 보내고, \(\alpha_3\)을 \(\alpha_1\)로 보내고, \(\alpha_2\)와 \(\alpha_4\)는 그대로 주는 치환을 간단히 다음과 같이 쓰자.

\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4\end{pmatrix}\)

방정식의 해의 치환군은 해의 위치를 서로 바꿔주는 치환 중에서, 해들이 만족시키는 방정식의 대수적관계 (더 정확히는 유리계수다항식) 를 보존하는 것들로 정의된다.

가령 위의 네 해는 \(\alpha_1\alpha_4=\alpha_2\alpha_3=1\), \(\alpha_1^2\alpha_3=1\)와 같은 대수적관계들을 만족시킨다. 그러면 치환군의 원소는 어떤 것들이 있을지 생각해볼 수 있겠다.

\(\tau=\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 3 & 4\end{pmatrix}\) 는 치환군의 원소가 될 수 없는데, \(\alpha_1\alpha_4=1\) 임에 반하여, \(\tau(\alpha_1)\tau(\alpha_4)=\alpha_2\alpha_4\neq 1\)이기 때문이다.(\(\alpha_i=\zeta^i\) 임을 기억하자)

 

\(\alpha_1\alpha_4=\alpha_2\alpha_3=1\)라는 조건으로부터, \(\{1,4\}\)와 \(\{2,3\}\) 이 쌍으로 움직여야 한다는 것을 알 수 있다. 따라서 다음과 같은 치환들만이 치환군의 원소 후보가 될 수 있다.

\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4\end{pmatrix}\),\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 2 & 4\end{pmatrix}\),\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3\end{pmatrix}\),\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3\end{pmatrix}\) ,\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 4 & 2\end{pmatrix}\),\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2\end{pmatrix}\),\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 2 & 3 & 1\end{pmatrix}\),\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1\end{pmatrix}\)

그러나 여기서 \(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 2 & 4\end{pmatrix}\)와 같은 경우는 치환군의 원소가 될 수 없는데,  \(\alpha_1^2\alpha_3=1\) 임에 반하여, \(\tau(\alpha_1)^2\tau(\alpha_3)=\alpha_1^2\alpha_2\neq 1\)이기 때문이다.(\(\alpha_i=\zeta^i\) 이므로)

 

결국엔 다음의 네 가지 치환만이 치환군의 원소가 될 수 있게 된다.

\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4\end{pmatrix}\),\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3\end{pmatrix}\) ,\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 4 & 2\end{pmatrix}\),\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1\end{pmatrix}\)

 

\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3\end{pmatrix}\)는 함수이므로, \(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3\end{pmatrix}^2\)는 함수의 합성으로 이해할 수 있다.

\(\sigma=\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3\end{pmatrix}\) 로 두면,\(\sigma^2= \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1\end{pmatrix}\),  \(\sigma^3=\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 4 & 2\end{pmatrix}\), \(\sigma^4=\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4\end{pmatrix}\) 가 되어, 모든 원소가 \(\sigma\)로부터 얻어지게 된다.

즉 친숙한 군 {차렷, 좌향좌, 우향우, 뒤로돌아}와 비교하자면, \(\sigma\)는 좌향좌 또는 우향우와 같은 역할을 방정식의 해에 대하여 하고 있다. 크기가 4인 순환군이 된다.

 

 

또다른 예를 하나 더 생각해 보자.

\(x^4 - 10x^2 + 1=0\)의 네 해는 다음과 같이 주어진다.

\(\alpha_1 = \sqrt{2} + \sqrt{3}\)

\(\alpha_2 = \sqrt{2} - \sqrt{3}\)

\(\alpha_3 = -\sqrt{2} + \sqrt{3}\)

\(\alpha_4= -\sqrt{2} - \sqrt{3}\)

 

이 경우엔 다음의 네 가지 치환만이 치환군의 원소가 될 수 있게 된다.

\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4\end{pmatrix}\),\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3\end{pmatrix}\) ,\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2\end{pmatrix}\),\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1\end{pmatrix}\)

그런데

\(x=\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3\end{pmatrix}\)로 쓰면, \(x^2=\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4\end{pmatrix}\)

\(y=\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2\end{pmatrix}\)로 쓰면, \(y^2=\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4\end{pmatrix}\)

\(z=\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1\end{pmatrix}\)로 쓰면, \(z^2=\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4\end{pmatrix}\)

로 모두 제곱하면 항등원이 되어버리므로, 이 군은 절대로 {차렷, 좌향좌, 우향우, 뒤로돌아}와 같은 구조를 가질 수 없음을 알게 된다.

 

방정식 \(z^4+z^3+z^2+z^1+1=0\)와 \(x^4 - 10x^2 + 1=0\) 는 뭔가 질적으로 다르다는 것을 이 치환군은 말해주고 있다.

 

 

상위 주제

 

재미있는 사실
  • \(S_6\)는 항등원이 아닌 outer automorphism을 가짐
    • 예외적인 경우

 

역사

 

 

수학용어번역

 

 

 

사전 형태의 자료