"데데킨트 합"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지에 Discontinuous-function-and-Fourier.gif 파일을 등록하셨습니다.)
1번째 줄: 1번째 줄:
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">간단한 소개</h5>
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">간단한 소개</h5>
  
*  다음과 같이 sawtooth 함수를 정의하자<br><math>\left((x)\right)= \begin{cases} x-\lfloor x\rfloor - 1/2 & \mbox{ if }x\in\mathbb{R}\setminus\mathbb{Z} \\ 0 & \mbox{ if } x\in\mathbb{Z} \end{cases}</math>   <br>
+
*  다음과 같이 sawtooth 함수를 정의하자<br><math>\left((x)\right)= \begin{cases} x-\lfloor x\rfloor - 1/2 & \mbox{ if }x\in\mathbb{R}\setminus\mathbb{Z} \\ 0 & \mbox{ if } x\in\mathbb{Z} \end{cases}</math>   <br>[/pages/3985465/attachments/1997179 Discontinuous-function-and-Fourier.gif]<br>
 +
*   <br>df<br>
 +
*   <br>  <br>
  
 
 
 
 
  
<math>s(h,k)=D(1,h;k)=\sum_{n\mod c} \left( \left( \frac{n}{c} \right) \right) \left( \left( \frac{hn}{c} \right) \right)</math>
+
<math>s(h,k)=D(1,h;k)=\sum_{n\mod K} \left( \left( \frac{n}{k} \right) \right) \left( \left( \frac{hn}{k} \right) \right)</math>
  
 
+
서로 소인 두 정수 <math>h, k</math>에 대하여 데데킨트 합은
  
 
 
 
 
106번째 줄: 108번째 줄:
 
* http://ko.wikipedia.org/wiki/
 
* http://ko.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/Dedekind_sum
 
* http://en.wikipedia.org/wiki/Dedekind_sum
* http://www.wolframalpha.com/input/?i=
+
* http://www.wolframalpha.com/input/?i=sawtooth+function
 
* [http://navercast.naver.com/science/list 네이버 오늘의과학]
 
* [http://navercast.naver.com/science/list 네이버 오늘의과학]
  

2009년 8월 13일 (목) 21:23 판

간단한 소개
  • 다음과 같이 sawtooth 함수를 정의하자
    \(\left((x)\right)= \begin{cases} x-\lfloor x\rfloor - 1/2 & \mbox{ if }x\in\mathbb{R}\setminus\mathbb{Z} \\ 0 & \mbox{ if } x\in\mathbb{Z} \end{cases}\)   
    [/pages/3985465/attachments/1997179 Discontinuous-function-and-Fourier.gif]
  •  
    df
  •  
     

 

\(s(h,k)=D(1,h;k)=\sum_{n\mod K} \left( \left( \frac{n}{k} \right) \right) \left( \left( \frac{hn}{k} \right) \right)\)

서로 소인 두 정수 \(h, k\)에 대하여 데데킨트 합은

 

상호법칙

 

(정리) 데데킨트
서로 소인 정수 \(b\)와 \(c\)에 대하여 다음이 성립한다.

\(s(b,c)+s(c,b) =\frac{1}{12}\left(\frac{b}{c}+\frac{1}{bc}+\frac{c}{b}\right)-\frac{1}{4}\)

 

 

일반화

\(D(a,b;c)=\sum_{n\mod c} \left( \left( \frac{an}{c} \right) \right) \left( \left( \frac{bn}{c} \right) \right)\)

 

상위 주제

 

 

 

하위페이지

 

 

재미있는 사실

 

 

역사
많이 나오는 질문과 답변

 

관련된 고교수학 또는 대학수학
  •  

 

관련된 다른 주제들

 

관련도서 및 추천도서

 

 

수학용어번역

 

참고할만한 자료

 

 

관련기사

 

 

블로그

 

이미지 검색

 

동영상