"동차다항식(Homogeneous polynomial)"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
15번째 줄: | 15번째 줄: | ||
<h5>오일러 항등식</h5> | <h5>오일러 항등식</h5> | ||
− | 차수가 | + | * 차수가 n인 3변수 동차다항식에 대하여, 다음이 성립한다.<br><math>x \frac{\partial f(x,y,z)}{\partial x}+y \frac{\partial f(x,y,z)}{\partial y}+z \frac{\partial f(x,y,z)}{\partial z}=n f(x,y,z)</math><br> |
− | |||
− | <math>x \frac{\partial f(x,y,z)}{\partial x}+y \frac{\partial f(x,y,z)}{\partial y}+z \frac{\partial f(x,y,z)}{\partial z}=n f(x,y,z)</math> | ||
45번째 줄: | 43번째 줄: | ||
<h5>관련된 항목들</h5> | <h5>관련된 항목들</h5> | ||
+ | |||
+ | * [[대칭군과 대칭다항식|대칭다항식]] | ||
2012년 1월 24일 (화) 15:00 판
이 항목의 수학노트 원문주소
개요
오일러 항등식
- 차수가 n인 3변수 동차다항식에 대하여, 다음이 성립한다.
\(x \frac{\partial f(x,y,z)}{\partial x}+y \frac{\partial f(x,y,z)}{\partial y}+z \frac{\partial f(x,y,z)}{\partial z}=n f(x,y,z)\)
역사
메모
- Math Overflow http://mathoverflow.net/search?q=
관련된 항목들
수학용어번역
- 단어사전
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- 한국통계학회 통계학 용어 온라인 대조표
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- The Online Encyclopaedia of Mathematics
- NIST Digital Library of Mathematical Functions
- The World of Mathematical Equations
리뷰논문, 에세이, 강의노트
관련논문