"라마누잔의 class invariants"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
1번째 줄: 1번째 줄:
<h5>간단한 소개</h5>
+
<math>g_n:=(\frac{k'(i\sqrt{n})^2}{2k(i\sqrt{n})})^{1/12}</math>
 +
 
 +
<math>g_{58}^2=\frac{\sqrt{29}+5}{2}</math>
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
<h5>정의</h5>
 +
 
 +
<math>q=e^{2\pi i \tau}</math>
 +
 
 +
<math>\theta_{2}(\tau)= \sum_{n=-\infty}^\infty q^{(n+\frac{1}{2})^2/2}</math>
 +
 
 +
<math>\theta_3(\tau)=\sum_{n=-\infty}^\infty q^{n^2/2}</math>
 +
 
 +
<math>\theta_{4}(\tau)= \sum_{n=-\infty}^\infty (-1)^n q^{n^2/2}</math>
 +
 
 +
<math>k=k(\tau)=\frac{\theta_2^2(\tau)}{\theta_3^2(\tau)}</math>
  
 
 
 
 
  
<math>g_{58}^2=\frac{\sqrt{29}+5}{2}</math>
+
 
 +
 
 +
 
  
 
 
 
 
45번째 줄: 67번째 줄:
  
 
* [http://arxiv1.library.cornell.edu/abs/math/0308028v1 Ramanujan's Most Singular Modulus]<br>
 
* [http://arxiv1.library.cornell.edu/abs/math/0308028v1 Ramanujan's Most Singular Modulus]<br>
** Mark B. Villarino
+
** Mark B. Villarino, Arxiv, 2003-8
** Arxiv, 2003-8
 
 
* [http://matwbn.icm.edu.pl/ksiazki/aa/aa73/aa7316.pdf Ramanujan’s class invariants and cubic continued fraction]<br>
 
* [http://matwbn.icm.edu.pl/ksiazki/aa/aa73/aa7316.pdf Ramanujan’s class invariants and cubic continued fraction]<br>
** BC Berndt, HH Chan, LC Zhang
+
** BC Berndt, HH Chan, LC Zhang, ACTA ARITHMETICA LXXIII.1 (1995)
** ACTA ARITHMETICA LXXIII.1 (1995)
 
 
* [http://www.ams.org/tran/1997-349-06/S0002-9947-97-01738-8/S0002-9947-97-01738-8.pdf Ramanujan's class invariants, Kronecker's limit formula, and modular equations]<br>
 
* [http://www.ams.org/tran/1997-349-06/S0002-9947-97-01738-8/S0002-9947-97-01738-8.pdf Ramanujan's class invariants, Kronecker's limit formula, and modular equations]<br>
** BC Berndt, HH Chan, LC Zhang
+
** BC Berndt, HH Chan, LC Zhang, Transactions of the American Mathematical Society, 1997
** Transactions of the American Mathematical Society, 1997
 
 
* [http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=20087 RAMANUJAN–WEBER CLASS INVARIANT Gn AND WATSON'S EMPIRICAL PROCESS]<br>
 
* [http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=20087 RAMANUJAN–WEBER CLASS INVARIANT Gn AND WATSON'S EMPIRICAL PROCESS]<br>
** HH Chan
+
** HH Chan, Journal of the London Mathematical Society, 1998
** Journal of the London Mathematical Society, 1998
 
 
* [http://www.journals.cms.math.ca/cgi-bin/vault/public/view/berndt7376/body/PDF/berndt7376.pdf Ramanujan and the modular j-invariant]<br>
 
* [http://www.journals.cms.math.ca/cgi-bin/vault/public/view/berndt7376/body/PDF/berndt7376.pdf Ramanujan and the modular j-invariant]<br>
** BC Berndt, HH Chan
+
** BC Berndt, HH Chan, Canadian Mathematical Bulletin, 1999
** Canadian Mathematical Bulletin, 1999
 
 
* http://ko.wikipedia.org/wiki/
 
* http://ko.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/

2009년 8월 14일 (금) 10:09 판

\(g_n:=(\frac{k'(i\sqrt{n})^2}{2k(i\sqrt{n})})^{1/12}\)

\(g_{58}^2=\frac{\sqrt{29}+5}{2}\)

 

 

 

정의

\(q=e^{2\pi i \tau}\)

\(\theta_{2}(\tau)= \sum_{n=-\infty}^\infty q^{(n+\frac{1}{2})^2/2}\)

\(\theta_3(\tau)=\sum_{n=-\infty}^\infty q^{n^2/2}\)

\(\theta_{4}(\tau)= \sum_{n=-\infty}^\infty (-1)^n q^{n^2/2}\)

\(k=k(\tau)=\frac{\theta_2^2(\tau)}{\theta_3^2(\tau)}\)

 

 

 

 

 

하위주제들

 

 

 

재미있는 사실

 

 

관련된 다른 주제들

 

관련도서 및 추천도서

 

참고할만한 자료

 

 

블로그