"락스 쌍 (Lax pair)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지를 개설하였습니다.)
 
1번째 줄: 1번째 줄:
 +
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5>
  
 +
* [http://statphys.springnote.com/pages/7627859 락스 쌍 (Lax pair)]<br>
 +
 +
 
 +
 +
 
 +
 +
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요</h5>
 +
 +
* 해밀턴 역학에서 보존량을 얻기 위해 유용한 방법
 +
* spectral parameter
 +
 +
* <math>H(q,p)</math><br>
 +
**  the coordinates <math>q=(q_1,\cdots,q_N)</math><br>
 +
**  the momenta <math>p=(p_1,\cdots,p_N)</math><br>
 +
** <math>\{q_i,p_i\}=\delta_{ij}</math><br>
 +
**  the equation of motion<br><math>\dot{q}_i=\{q_i,H\}=\partial H/\partial p_i</math><br><math>\dot{p}_i=\{q_i,H\}-\partial H/\partial q_i</math><br>
 +
* For an integrable system, sometimes there exists a Lax pair
 +
*  a pair of <math>N\times N</math> matrices L(x,p) and M(x,p) such that the Lax equation <math>\dot{L}=\{L,M\}</math> is equivalent to the Hamiltonian equations of the mechanical system<br><math>\dot{q}_i=\{q_i,H\}=\partial H/\partial p_i</math><br><math>\dot{p}_i=\{q_i,H\}-\partial H/\partial q_i</math><br>
 +
*  integrals of motion can be derived from the trace of powers of L<br>
 +
 +
 
 +
 +
 
 +
 +
 
 +
 +
<h5 style="line-height: 2em; margin: 0px;">Lax pairs with spectral parameters</h5>
 +
 +
*  spectral curve<br><math>\{(k,z)\in\mathbb{C}\times\mathbb{C}:\det(kI-L(z))=0\}</math><br>
 +
*  integrals of motion<br><math>\operatorname{tr} L(z)=\sum_{n}L_{n}z^{n} </math><br>
 +
* for examples, look at Introduction to classical integrable systems, chapter 3 http://goo.gl/LaawC
 +
 +
 
 +
 +
 
 +
 +
 
 +
 +
<h5 style="line-height: 2em; margin: 0px;">isospectral deformation</h5>
 +
 +
*  L is an isospectral deformation of L(0) if  L(t) has the same eigenvalues for all t<br>
 +
* <math>L(t)v(t)=\lambda v(t)</math><br>
 +
*  Record their derivative by a matrix<br> v'(t)=B(t)v(t)<br>
 +
*  Differentiate <math>L(t)v(t)=\lambda v(t)</math><br> L'(t)v(t)+L(t)v'(t)=\lambda v'(t)<br> L'(t)v'(t)=[B(t),L(t)]v(t)<br> L'(t)=[B[t],L(t)<br>
 +
*  So B(t) and L(t) are a Lax pair<br>
 +
 +
 
 +
 +
 
 +
 +
<h5 style="line-height: 2em; margin: 0px;">examples</h5>
 +
 +
* <math>u_t=\frac{1}{4}u_{xxx}+\frac{3}{2}uu_x</math>
 +
*  Sturm-Liouville operator<br>
 +
** <math>L=\partial^2+u</math>
 +
* <math>B=\partial_{x}^3+\frac{3}{2}u\partial_{x}+\frac{3}{4}u_{x}</math>
 +
*  equation<br><math>u_{t}=[B,L]=\frac{1}{4}u_{xxx}+\frac{3}{2}uu_x</math><br>
 +
 +
 
 +
 +
 
 +
 +
 
 +
 +
<h5 style="line-height: 2em; margin: 0px;">examples : KdV equation</h5>
 +
 +
* <math>u_t=6uu_x-u_{xxx}</math><br>
 +
*  Sturm-Liouville operator<br>
 +
** <math>L=-\partial^2+u</math>
 +
* <math>A=4\partial^3-3(u\partial +\partial u)</math>
 +
*  KdV equation<br>
 +
** <math>\dot{u}=[L,A]</math>
 +
 +
 
 +
 +
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">역사</h5>
 +
 +
 
 +
 +
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 +
*  
 +
 +
 
 +
 +
 
 +
 +
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">메모</h5>
 +
 +
* [http://www.cns.gatech.edu/people/chandre/Articles/Lax-Pair.pdf Does the existence of a Lax pair imply integrability?]<br>
 +
* http://iopscience.iop.org/0266-5611/25/12/123007<br>
 +
* [http://www.maths.tcd.ie/%7Eislands/index.php?title=Curves_and_Lax_pairs Curves and Lax pairs] -many examples<br>
 +
 +
 
 +
 +
 
 +
 +
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련된 항목들</h5>
 +
 +
 
 +
 +
 
 +
 +
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">물리학용어번역</h5>
 +
 +
* 단어사전 http://www.google.com/dictionary?langpair=en|ko&q=
 +
* 발음사전 http://www.forvo.com/search/
 +
*  한국물리학회 물리용어<br>
 +
** http://www.kps.or.kr/home/kor/morgue/dic/default.asp?globalmenu=6&localmenu=2
 +
** http://www.kps.or.kr/home/kor/morgue/dic/word_list.asp?globalmenu=6&localmenu=2&lang=english
 +
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
 +
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 +
* [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교]
 +
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 +
 +
 
 +
 +
 
 +
 +
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">사전 형태의 자료</h5>
 +
 +
*   <br>
 +
* http://en.wikipedia.org/wiki/Lax_pair
 +
* [http://en.wikipedia.org/wiki/Liouville%27s_theorem_%28Hamiltonian%29 http://en.wikipedia.org/wiki/Liouville's_theorem_(Hamiltonian)]
 +
* http://en.wikipedia.org/wiki/Poisson_bracket
 +
 +
* http://ko.wikipedia.org/wiki/
 +
* http://en.wikipedia.org/wiki/
 +
 +
 
 +
 +
 
 +
 +
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">리뷰논문</h5>
 +
 +
*   <br>
 +
 +
 
 +
 +
 
 +
 +
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련논문</h5>
 +
 +
* [http://dx.doi.org/10.1007/BF02102813 How to find the Lax pair from the Yang-Baxter equation] M. Q. Zhang, 1991<br>
 +
* http://www.jstor.org/action/doBasicSearch?Query=
 +
* http://www.ams.org/mathscinet
 +
* http://dx.doi.org/
 +
 +
 
 +
 +
 
 +
 +
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련도서</h5>
 +
 +
*  도서내검색<br>
 +
** http://books.google.com/books?q=
 +
** http://book.daum.net/search/contentSearch.do?query=
 +
*  도서검색<br>
 +
** http://books.google.com/books?q=
 +
** http://book.daum.net/search/mainSearch.do?query=
 +
** http://book.daum.net/search/mainSearch.do?query=
 +
 +
 
 +
 +
 
 +
 +
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">블로그</h5>
 +
 +
*  구글 블로그 검색<br>
 +
** http://blogsearch.google.com/blogsearch?q=
 +
** http://blogsearch.google.com/blogsearch?q=
 +
* 기타

2012년 6월 19일 (화) 11:55 판

이 항목의 스프링노트 원문주소

 

 

개요
  • 해밀턴 역학에서 보존량을 얻기 위해 유용한 방법
  • spectral parameter
  • \(H(q,p)\)
    • the coordinates \(q=(q_1,\cdots,q_N)\)
    • the momenta \(p=(p_1,\cdots,p_N)\)
    • \(\{q_i,p_i\}=\delta_{ij}\)
    • the equation of motion
      \(\dot{q}_i=\{q_i,H\}=\partial H/\partial p_i\)
      \(\dot{p}_i=\{q_i,H\}-\partial H/\partial q_i\)
  • For an integrable system, sometimes there exists a Lax pair
  • a pair of \(N\times N\) matrices L(x,p) and M(x,p) such that the Lax equation \(\dot{L}=\{L,M\}\) is equivalent to the Hamiltonian equations of the mechanical system
    \(\dot{q}_i=\{q_i,H\}=\partial H/\partial p_i\)
    \(\dot{p}_i=\{q_i,H\}-\partial H/\partial q_i\)
  • integrals of motion can be derived from the trace of powers of L

 

 

 

Lax pairs with spectral parameters
  • spectral curve
    \(\{(k,z)\in\mathbb{C}\times\mathbb{C}:\det(kI-L(z))=0\}\)
  • integrals of motion
    \(\operatorname{tr} L(z)=\sum_{n}L_{n}z^{n} \)
  • for examples, look at Introduction to classical integrable systems, chapter 3 http://goo.gl/LaawC

 

 

 

isospectral deformation
  • L is an isospectral deformation of L(0) if  L(t) has the same eigenvalues for all t
  • \(L(t)v(t)=\lambda v(t)\)
  • Record their derivative by a matrix
    v'(t)=B(t)v(t)
  • Differentiate \(L(t)v(t)=\lambda v(t)\)
    L'(t)v(t)+L(t)v'(t)=\lambda v'(t)
    L'(t)v'(t)=[B(t),L(t)]v(t)
    L'(t)=[B[t],L(t)
  • So B(t) and L(t) are a Lax pair

 

 

examples
  • \(u_t=\frac{1}{4}u_{xxx}+\frac{3}{2}uu_x\)
  • Sturm-Liouville operator
    • \(L=\partial^2+u\)
  • \(B=\partial_{x}^3+\frac{3}{2}u\partial_{x}+\frac{3}{4}u_{x}\)
  • equation
    \(u_{t}=[B,L]=\frac{1}{4}u_{xxx}+\frac{3}{2}uu_x\)

 

 

 

examples : KdV equation
  • \(u_t=6uu_x-u_{xxx}\)
  • Sturm-Liouville operator
    • \(L=-\partial^2+u\)
  • \(A=4\partial^3-3(u\partial +\partial u)\)
  • KdV equation
    • \(\dot{u}=[L,A]\)

 

역사

 

 

 

메모

 

 

관련된 항목들

 

 

물리학용어번역

 

 

사전 형태의 자료

 

 

리뷰논문
  •  

 

 

관련논문

 

 

관련도서

 

 

블로그