"락스 쌍 (Lax pair)"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
(피타고라스님이 이 페이지를 개설하였습니다.) |
|||
1번째 줄: | 1번째 줄: | ||
+ | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5> | ||
+ | * [http://statphys.springnote.com/pages/7627859 락스 쌍 (Lax pair)]<br> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요</h5> | ||
+ | |||
+ | * 해밀턴 역학에서 보존량을 얻기 위해 유용한 방법 | ||
+ | * spectral parameter | ||
+ | |||
+ | * <math>H(q,p)</math><br> | ||
+ | ** the coordinates <math>q=(q_1,\cdots,q_N)</math><br> | ||
+ | ** the momenta <math>p=(p_1,\cdots,p_N)</math><br> | ||
+ | ** <math>\{q_i,p_i\}=\delta_{ij}</math><br> | ||
+ | ** the equation of motion<br><math>\dot{q}_i=\{q_i,H\}=\partial H/\partial p_i</math><br><math>\dot{p}_i=\{q_i,H\}-\partial H/\partial q_i</math><br> | ||
+ | * For an integrable system, sometimes there exists a Lax pair | ||
+ | * a pair of <math>N\times N</math> matrices L(x,p) and M(x,p) such that the Lax equation <math>\dot{L}=\{L,M\}</math> is equivalent to the Hamiltonian equations of the mechanical system<br><math>\dot{q}_i=\{q_i,H\}=\partial H/\partial p_i</math><br><math>\dot{p}_i=\{q_i,H\}-\partial H/\partial q_i</math><br> | ||
+ | * integrals of motion can be derived from the trace of powers of L<br> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5 style="line-height: 2em; margin: 0px;">Lax pairs with spectral parameters</h5> | ||
+ | |||
+ | * spectral curve<br><math>\{(k,z)\in\mathbb{C}\times\mathbb{C}:\det(kI-L(z))=0\}</math><br> | ||
+ | * integrals of motion<br><math>\operatorname{tr} L(z)=\sum_{n}L_{n}z^{n} </math><br> | ||
+ | * for examples, look at Introduction to classical integrable systems, chapter 3 http://goo.gl/LaawC | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5 style="line-height: 2em; margin: 0px;">isospectral deformation</h5> | ||
+ | |||
+ | * L is an isospectral deformation of L(0) if L(t) has the same eigenvalues for all t<br> | ||
+ | * <math>L(t)v(t)=\lambda v(t)</math><br> | ||
+ | * Record their derivative by a matrix<br> v'(t)=B(t)v(t)<br> | ||
+ | * Differentiate <math>L(t)v(t)=\lambda v(t)</math><br> L'(t)v(t)+L(t)v'(t)=\lambda v'(t)<br> L'(t)v'(t)=[B(t),L(t)]v(t)<br> L'(t)=[B[t],L(t)<br> | ||
+ | * So B(t) and L(t) are a Lax pair<br> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5 style="line-height: 2em; margin: 0px;">examples</h5> | ||
+ | |||
+ | * <math>u_t=\frac{1}{4}u_{xxx}+\frac{3}{2}uu_x</math> | ||
+ | * Sturm-Liouville operator<br> | ||
+ | ** <math>L=\partial^2+u</math> | ||
+ | * <math>B=\partial_{x}^3+\frac{3}{2}u\partial_{x}+\frac{3}{4}u_{x}</math> | ||
+ | * equation<br><math>u_{t}=[B,L]=\frac{1}{4}u_{xxx}+\frac{3}{2}uu_x</math><br> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5 style="line-height: 2em; margin: 0px;">examples : KdV equation</h5> | ||
+ | |||
+ | * <math>u_t=6uu_x-u_{xxx}</math><br> | ||
+ | * Sturm-Liouville operator<br> | ||
+ | ** <math>L=-\partial^2+u</math> | ||
+ | * <math>A=4\partial^3-3(u\partial +\partial u)</math> | ||
+ | * KdV equation<br> | ||
+ | ** <math>\dot{u}=[L,A]</math> | ||
+ | |||
+ | |||
+ | |||
+ | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">역사</h5> | ||
+ | |||
+ | |||
+ | |||
+ | * http://www.google.com/search?hl=en&tbs=tl:1&q= | ||
+ | * | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">메모</h5> | ||
+ | |||
+ | * [http://www.cns.gatech.edu/people/chandre/Articles/Lax-Pair.pdf Does the existence of a Lax pair imply integrability?]<br> | ||
+ | * http://iopscience.iop.org/0266-5611/25/12/123007<br> | ||
+ | * [http://www.maths.tcd.ie/%7Eislands/index.php?title=Curves_and_Lax_pairs Curves and Lax pairs] -many examples<br> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련된 항목들</h5> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">물리학용어번역</h5> | ||
+ | |||
+ | * 단어사전 http://www.google.com/dictionary?langpair=en|ko&q= | ||
+ | * 발음사전 http://www.forvo.com/search/ | ||
+ | * 한국물리학회 물리용어<br> | ||
+ | ** http://www.kps.or.kr/home/kor/morgue/dic/default.asp?globalmenu=6&localmenu=2 | ||
+ | ** http://www.kps.or.kr/home/kor/morgue/dic/word_list.asp?globalmenu=6&localmenu=2&lang=english | ||
+ | * [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br> | ||
+ | ** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr= | ||
+ | * [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교] | ||
+ | * [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판] | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">사전 형태의 자료</h5> | ||
+ | |||
+ | * <br> | ||
+ | * http://en.wikipedia.org/wiki/Lax_pair | ||
+ | * [http://en.wikipedia.org/wiki/Liouville%27s_theorem_%28Hamiltonian%29 http://en.wikipedia.org/wiki/Liouville's_theorem_(Hamiltonian)] | ||
+ | * http://en.wikipedia.org/wiki/Poisson_bracket | ||
+ | |||
+ | * http://ko.wikipedia.org/wiki/ | ||
+ | * http://en.wikipedia.org/wiki/ | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">리뷰논문</h5> | ||
+ | |||
+ | * <br> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련논문</h5> | ||
+ | |||
+ | * [http://dx.doi.org/10.1007/BF02102813 How to find the Lax pair from the Yang-Baxter equation] M. Q. Zhang, 1991<br> | ||
+ | * http://www.jstor.org/action/doBasicSearch?Query= | ||
+ | * http://www.ams.org/mathscinet | ||
+ | * http://dx.doi.org/ | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련도서</h5> | ||
+ | |||
+ | * 도서내검색<br> | ||
+ | ** http://books.google.com/books?q= | ||
+ | ** http://book.daum.net/search/contentSearch.do?query= | ||
+ | * 도서검색<br> | ||
+ | ** http://books.google.com/books?q= | ||
+ | ** http://book.daum.net/search/mainSearch.do?query= | ||
+ | ** http://book.daum.net/search/mainSearch.do?query= | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">블로그</h5> | ||
+ | |||
+ | * 구글 블로그 검색<br> | ||
+ | ** http://blogsearch.google.com/blogsearch?q= | ||
+ | ** http://blogsearch.google.com/blogsearch?q= | ||
+ | * 기타 |
2012년 6월 19일 (화) 11:55 판
이 항목의 스프링노트 원문주소
개요
- 해밀턴 역학에서 보존량을 얻기 위해 유용한 방법
- spectral parameter
- \(H(q,p)\)
- the coordinates \(q=(q_1,\cdots,q_N)\)
- the momenta \(p=(p_1,\cdots,p_N)\)
- \(\{q_i,p_i\}=\delta_{ij}\)
- the equation of motion
\(\dot{q}_i=\{q_i,H\}=\partial H/\partial p_i\)
\(\dot{p}_i=\{q_i,H\}-\partial H/\partial q_i\)
- the coordinates \(q=(q_1,\cdots,q_N)\)
- For an integrable system, sometimes there exists a Lax pair
- a pair of \(N\times N\) matrices L(x,p) and M(x,p) such that the Lax equation \(\dot{L}=\{L,M\}\) is equivalent to the Hamiltonian equations of the mechanical system
\(\dot{q}_i=\{q_i,H\}=\partial H/\partial p_i\)
\(\dot{p}_i=\{q_i,H\}-\partial H/\partial q_i\) - integrals of motion can be derived from the trace of powers of L
Lax pairs with spectral parameters
- spectral curve
\(\{(k,z)\in\mathbb{C}\times\mathbb{C}:\det(kI-L(z))=0\}\) - integrals of motion
\(\operatorname{tr} L(z)=\sum_{n}L_{n}z^{n} \) - for examples, look at Introduction to classical integrable systems, chapter 3 http://goo.gl/LaawC
isospectral deformation
- L is an isospectral deformation of L(0) if L(t) has the same eigenvalues for all t
- \(L(t)v(t)=\lambda v(t)\)
- Record their derivative by a matrix
v'(t)=B(t)v(t) - Differentiate \(L(t)v(t)=\lambda v(t)\)
L'(t)v(t)+L(t)v'(t)=\lambda v'(t)
L'(t)v'(t)=[B(t),L(t)]v(t)
L'(t)=[B[t],L(t) - So B(t) and L(t) are a Lax pair
examples
- \(u_t=\frac{1}{4}u_{xxx}+\frac{3}{2}uu_x\)
- Sturm-Liouville operator
- \(L=\partial^2+u\)
- \(B=\partial_{x}^3+\frac{3}{2}u\partial_{x}+\frac{3}{4}u_{x}\)
- equation
\(u_{t}=[B,L]=\frac{1}{4}u_{xxx}+\frac{3}{2}uu_x\)
examples : KdV equation
- \(u_t=6uu_x-u_{xxx}\)
- Sturm-Liouville operator
- \(L=-\partial^2+u\)
- \(A=4\partial^3-3(u\partial +\partial u)\)
- KdV equation
- \(\dot{u}=[L,A]\)
역사
메모
- Does the existence of a Lax pair imply integrability?
- http://iopscience.iop.org/0266-5611/25/12/123007
- Curves and Lax pairs -many examples
관련된 항목들
물리학용어번역
- 단어사전 http://www.google.com/dictionary?langpair=en%7Cko&q=
- 발음사전 http://www.forvo.com/search/
- 한국물리학회 물리용어
- 대한수학회 수학 학술 용어집
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
사전 형태의 자료
-
- http://en.wikipedia.org/wiki/Lax_pair
- http://en.wikipedia.org/wiki/Liouville's_theorem_(Hamiltonian)
- http://en.wikipedia.org/wiki/Poisson_bracket
리뷰논문
관련논문
- How to find the Lax pair from the Yang-Baxter equation M. Q. Zhang, 1991
- http://www.jstor.org/action/doBasicSearch?Query=
- http://www.ams.org/mathscinet
- http://dx.doi.org/
관련도서
- 도서내검색
- 도서검색