"락스 쌍 (Lax pair)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
12번째 줄: 12번째 줄:
 
* spectral parameter
 
* spectral parameter
  
* <math>H(q,p)</math><br>
+
 
 +
 
 +
 
 +
 
 +
<h5>기호</h5>
 +
 
 +
* 해밀토니안 <math>H(q,p)</math><br>
 
**  the coordinates <math>q=(q_1,\cdots,q_N)</math><br>
 
**  the coordinates <math>q=(q_1,\cdots,q_N)</math><br>
 
**  the momenta <math>p=(p_1,\cdots,p_N)</math><br>
 
**  the momenta <math>p=(p_1,\cdots,p_N)</math><br>
 
** <math>\{q_i,p_i\}=\delta_{ij}</math><br>
 
** <math>\{q_i,p_i\}=\delta_{ij}</math><br>
 
**  the equation of motion<br><math>\dot{q}_i=\{q_i,H\}=\partial H/\partial p_i</math><br><math>\dot{p}_i=\{q_i,H\}-\partial H/\partial q_i</math><br>
 
**  the equation of motion<br><math>\dot{q}_i=\{q_i,H\}=\partial H/\partial p_i</math><br><math>\dot{p}_i=\{q_i,H\}-\partial H/\partial q_i</math><br>
* For an integrable system, sometimes there exists a Lax pair
+
 
 +
 
 +
 
 +
 
 +
 
 +
<h5>락스 쌍</h5>
 +
 
 +
* 많은 적분가능
 
*  a pair of <math>N\times N</math> matrices L(x,p) and M(x,p) such that the Lax equation <math>\dot{L}=\{L,M\}</math> is equivalent to the Hamiltonian equations of the mechanical system<br><math>\dot{q}_i=\{q_i,H\}=\partial H/\partial p_i</math><br><math>\dot{p}_i=\{q_i,H\}-\partial H/\partial q_i</math><br>
 
*  a pair of <math>N\times N</math> matrices L(x,p) and M(x,p) such that the Lax equation <math>\dot{L}=\{L,M\}</math> is equivalent to the Hamiltonian equations of the mechanical system<br><math>\dot{q}_i=\{q_i,H\}=\partial H/\partial p_i</math><br><math>\dot{p}_i=\{q_i,H\}-\partial H/\partial q_i</math><br>
*  integrals of motion can be derived from the trace of powers of L<br>
+
*  integrals of motion can be derived from the trace of powers of L<br><math>\frac{d}{dt}\operatorname{tr}(L^p)=\operatorname{tr}(p [L,M]L^{p-1})=p\operatorname{tr}(LML^{p-1}-ML^{p})=0</math><br> 따라서 <math>\operatorname{tr}(L^p)</math> 는 보존량이 된다<br>
  
 
 
 
 
37번째 줄: 50번째 줄:
 
 
 
 
  
 
+
<h5>isospectral deformation</h5>
 
 
<h5 style="line-height: 2em; margin: 0px;">isospectral deformation</h5>
 
  
 
*  L is an isospectral deformation of L(0) if  L(t) has the same eigenvalues for all t<br>
 
*  L is an isospectral deformation of L(0) if  L(t) has the same eigenvalues for all t<br>

2012년 6월 19일 (화) 12:00 판

이 항목의 스프링노트 원문주소

 

 

개요
  • 해밀턴 역학에서 보존량을 얻기 위해 유용한 방법
  • spectral parameter

 

 

기호
  • 해밀토니안 \(H(q,p)\)
    • the coordinates \(q=(q_1,\cdots,q_N)\)
    • the momenta \(p=(p_1,\cdots,p_N)\)
    • \(\{q_i,p_i\}=\delta_{ij}\)
    • the equation of motion
      \(\dot{q}_i=\{q_i,H\}=\partial H/\partial p_i\)
      \(\dot{p}_i=\{q_i,H\}-\partial H/\partial q_i\)

 

 

락스 쌍
  • 많은 적분가능
  • a pair of \(N\times N\) matrices L(x,p) and M(x,p) such that the Lax equation \(\dot{L}=\{L,M\}\) is equivalent to the Hamiltonian equations of the mechanical system
    \(\dot{q}_i=\{q_i,H\}=\partial H/\partial p_i\)
    \(\dot{p}_i=\{q_i,H\}-\partial H/\partial q_i\)
  • integrals of motion can be derived from the trace of powers of L
    \(\frac{d}{dt}\operatorname{tr}(L^p)=\operatorname{tr}(p [L,M]L^{p-1})=p\operatorname{tr}(LML^{p-1}-ML^{p})=0\)
    따라서 \(\operatorname{tr}(L^p)\) 는 보존량이 된다

 

 

 

Lax pairs with spectral parameters
  • spectral curve
    \(\{(k,z)\in\mathbb{C}\times\mathbb{C}:\det(kI-L(z))=0\}\)
  • integrals of motion
    \(\operatorname{tr} L(z)=\sum_{n}L_{n}z^{n} \)
  • for examples, look at Introduction to classical integrable systems, chapter 3 http://goo.gl/LaawC

 

 

isospectral deformation
  • L is an isospectral deformation of L(0) if  L(t) has the same eigenvalues for all t
  • \(L(t)v(t)=\lambda v(t)\)
  • Record their derivative by a matrix
    v'(t)=B(t)v(t)
  • Differentiate \(L(t)v(t)=\lambda v(t)\)
    L'(t)v(t)+L(t)v'(t)=\lambda v'(t)
    L'(t)v'(t)=[B(t),L(t)]v(t)
    L'(t)=[B[t],L(t)
  • So B(t) and L(t) are a Lax pair

 

 

examples
  • \(u_t=\frac{1}{4}u_{xxx}+\frac{3}{2}uu_x\)
  • Sturm-Liouville operator
    • \(L=\partial^2+u\)
  • \(B=\partial_{x}^3+\frac{3}{2}u\partial_{x}+\frac{3}{4}u_{x}\)
  • equation
    \(u_{t}=[B,L]=\frac{1}{4}u_{xxx}+\frac{3}{2}uu_x\)

 

 

 

examples : KdV equation
  • \(u_t=6uu_x-u_{xxx}\)
  • Sturm-Liouville operator
    • \(L=-\partial^2+u\)
  • \(A=4\partial^3-3(u\partial +\partial u)\)
  • KdV equation
    • \(\dot{u}=[L,A]\)

 

역사

 

 

 

메모

 

 

관련된 항목들

 

 

물리학용어번역

 

 

사전 형태의 자료

 

 

리뷰논문
  •  

 

 

관련논문

 

 

관련도서

 

 

블로그