"1부터 n까지의 최소공배수"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
20번째 줄: | 20번째 줄: | ||
* [[이항계수와 조합]] | * [[이항계수와 조합]] | ||
+ | * 1부터 n+1 까지의 자연수의 최소공배수를 | ||
− | <math>\frac{\ | + | |
+ | |||
+ | <math>\frac{\operatorname{LCM}(n+1)}{n+1}=\operatorname{LCM}({n\choose 0}\cdots {n\choose n})</math> | ||
2011년 6월 16일 (목) 16:35 판
이 항목의 수학노트 원문주소
개요
\(d_n = \prod_{\substack{p\le n\\ p \mathrm{\ prime}}} p^{\lfloor \log_p n \rfloor} \le \prod_{\substack{p\le n\\ p \mathrm{\ prime}}} p^ {\log_p n} = \prod_{\substack{p\le n\\ p \mathrm{\ prime}}} n = n^{\pi(n)}\)
\(d_n<2.99^n\)
이항계수
- 이항계수와 조합
- 1부터 n+1 까지의 자연수의 최소공배수를
\(\frac{\operatorname{LCM}(n+1)}{n+1}=\operatorname{LCM}({n\choose 0}\cdots {n\choose n})\)
재미있는 사실
- Math Overflow http://mathoverflow.net/search?q=
- 네이버 지식인 http://kin.search.naver.com/search.naver?where=kin_qna&query=
역사
메모
관련된 항목들
수학용어번역
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- The Online Encyclopaedia of Mathematics
- NIST Digital Library of Mathematical Functions
- The World of Mathematical Equations
리뷰논문과 에세이
관련논문
- Hong, Shaofang. 2009. “Nair’s and Farhi’s identities involving the least common multiple of binomial coefficients are equivalent”. 0907.3401 (7월 20). [1]http://arxiv.org/abs/0907.3401
- Farhi, Bakir, 와/과Daniel Kane. 2008. “New results on the least common multiple of consecutive integers”. 0808.1507 (8월 11). http://arxiv.org/abs/0808.1507
- Hanson, Denis. 1972. “On the product of the primes”. <full_title>Canadian Mathematical Bulletin</full_title> <full_title>Bulletin canadien de mathématiques</full_title> 15 (0): 33-37. doi:10.4153/CMB-1972-007-7.
- http://www.jstor.org/action/doBasicSearch?Query=
- http://www.ams.org/mathscinet
- http://dx.doi.org/10.4153/CMB-1972-007-7
관련도서