"로저스-라마누잔 항등식"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
(피타고라스님이 이 페이지의 이름을 로저스-라마누잔 연분수로 바꾸었습니다.) |
|||
10번째 줄: | 10번째 줄: | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>로저스-라마누잔 연분수</h5> | ||
+ | |||
+ | <math>\cfrac{1}{1 + \cfrac{e^{-2\pi}}{1 + \cfrac{e^{-4\pi}}{1+\dots}}} = \left({\sqrt{5+\sqrt{5}\over 2}-{\sqrt{5}+1\over 2}}\right)e^{2\pi/5} = e^{2\pi/5}\left({\sqrt{\varphi\sqrt{5}}-\varphi}\right) = 0.9981360\dots</math> | ||
80번째 줄: | 88번째 줄: | ||
** W. Duke | ** W. Duke | ||
** Bull. Amer. Math. Soc. 42 (2005), 137-162. | ** Bull. Amer. Math. Soc. 42 (2005), 137-162. | ||
− | * | + | * [http://www.digizeitschriften.de/index.php?id=loader&tx_jkDigiTools_pi1%5BIDDOC%5D=503543 Explicit evaluations of the Rogers-Ramanujan continued fraction.]<br> |
− | ** | + | ** Berndt, B.C,Chan, H.H.,Zhang, L.-C. |
+ | ** Journal für die reine und angewandte Mathematik 480, 1996 | ||
+ | * [http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.31.5875 Ramanujan’s formulas for the explicit evaluation of the Rogers–Ramanujan continued fraction and theta-functions]<br> | ||
+ | ** Soon-Yi Kang | ||
+ | ** ACTA ARITHMETICA XC.1 (1999) | ||
* Watson, G. N.<br> | * Watson, G. N.<br> | ||
** [http://www.google.com/url?sa=t&ct=res&cd=1&url=http%3A%2F%2Fjlms.oxfordjournals.org%2Fcgi%2Freprint%2Fs1-4%2F3%2F231&ei=JY1hSLWRLpSY8gSI7JSiBQ&usg=AFQjCNElhd9FwCl3m3Qcb3hW7j87K1P5FQ&sig2=4OhMIB56amm8h4EOGNSk6g Theorems Stated by Ramanujan (IX): Two Continued Fractions.] | ** [http://www.google.com/url?sa=t&ct=res&cd=1&url=http%3A%2F%2Fjlms.oxfordjournals.org%2Fcgi%2Freprint%2Fs1-4%2F3%2F231&ei=JY1hSLWRLpSY8gSI7JSiBQ&usg=AFQjCNElhd9FwCl3m3Qcb3hW7j87K1P5FQ&sig2=4OhMIB56amm8h4EOGNSk6g Theorems Stated by Ramanujan (IX): Two Continued Fractions.] |
2009년 5월 8일 (금) 10:59 판
간단한 소개
라마누잔이 하디에게 보낸 편지에는 다음과 같은 공식이 포함되어 있음
\(\cfrac{1}{1 + \cfrac{e^{-2\pi}}{1 + \cfrac{e^{-4\pi}}{1+\dots}}} = \left({\sqrt{5+\sqrt{5}\over 2}-{\sqrt{5}+1\over 2}}\right)e^{2\pi/5} = e^{2\pi/5}\left({\sqrt{\varphi\sqrt{5}}-\varphi}\right) = 0.9981360\dots\)
\(\varphi\) 는 황금비
로저스-라마누잔 연분수
\(\cfrac{1}{1 + \cfrac{e^{-2\pi}}{1 + \cfrac{e^{-4\pi}}{1+\dots}}} = \left({\sqrt{5+\sqrt{5}\over 2}-{\sqrt{5}+1\over 2}}\right)e^{2\pi/5} = e^{2\pi/5}\left({\sqrt{\varphi\sqrt{5}}-\varphi}\right) = 0.9981360\dots\)
하위주제들
하위페이지
재미있는 사실
관련된 단원
많이 나오는 질문
관련된 고교수학 또는 대학수학
관련된 다른 주제들
관련도서 및 추천도서
- 도서내검색
- 도서검색
참고할만한 자료
- Continued fractions and modular functions
- W. Duke
- Bull. Amer. Math. Soc. 42 (2005), 137-162.
- Explicit evaluations of the Rogers-Ramanujan continued fraction.
- Berndt, B.C,Chan, H.H.,Zhang, L.-C.
- Journal für die reine und angewandte Mathematik 480, 1996
- Ramanujan’s formulas for the explicit evaluation of the Rogers–Ramanujan continued fraction and theta-functions
- Soon-Yi Kang
- ACTA ARITHMETICA XC.1 (1999)
- Watson, G. N.
- http://ko.wikipedia.org/wiki/연분수
- http://en.wikipedia.org/wiki/Rogers%E2%80%93Ramanujan_continued_fraction
- http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=ramanujan's
- http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=
- 다음백과사전 http://enc.daum.net/dic100/search.do?q=
관련기사
네이버 뉴스 검색 (키워드 수정)
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=연분수
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=라마누잔
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
블로그
- 수학과 대학원생이 되면 좋은점 - 라마누잔 이야기
- 피타고라스의 창, 2009-6-24
- 피타고라스의 창, 2009-6-24
- 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q=라마누잔
- 트렌비 블로그 검색 http://www.trenb.com/search.qst?q=라마누잔
이미지 검색
- http://commons.wikimedia.org/w/index.php?title=Special%3ASearch&search=
- http://images.google.com/images?q=
- http://www.artchive.com