"루트 시스템 (root system)과 딘킨 다이어그램 (Dynkin diagram)"의 두 판 사이의 차이
		
		
		
		
		
		둘러보기로 가기
		검색하러 가기
		
				
		
		
	
 (피타고라스님이 이 페이지의 이름을 루트 시스템 (root system)과 딘킨 다이어그램로 바꾸었습니다.)  | 
				|
(차이 없음) 
 | |
2010년 8월 18일 (수) 23:47 판
이 항목의 스프링노트 원문주소
개요
- 루트 시스템은 유한차원 유클리드 벡터공간에서 여러가지 조건들을 만족시키는 벡터들의 모임이다
 -  
 - 리군과 리대수의 분류, 격자의 분류, 유한반사군과 콕세터군(finite reflection groups and Coxeter groups) 등에서 중요하게 활용
 - 딘킨 다이어그램의 분류
 
정의
- E를 내적이 주어진 유클리드 벡터공간이라 하자.
 - 다음 조건을 만족시키는 E의 유한인 부분집합 \(\Phi\)를 루트 시스템이라 한다.
- \(\Phi\)는 E를 스팬(span)하며 \(0 \not \in \Phi\)
 - \(\alpha \in \Phi\), \(\lambda \alpha \in \Phi \iff \lambda=\pm 1\)
 - \(\alpha,\beta \in \Phi\)이면 \(\sigma_\alpha(\beta) =\beta-2\frac{(\beta,\alpha)}{(\alpha,\alpha)}\alpha \in \Phi\)
 - \(\langle \beta, \alpha \rangle = 2 \frac{(\beta,\alpha)}{(\alpha,\alpha)} \in \mathbb{Z}\)
 
 - 마지막 조건을 crystallographic조건이라 한다
 
2차원 루트 시스템
- \(A_1\times A_1\), \(A_2\), \(B_2\), 
 
재미있는 사실
- Math Overflow http://mathoverflow.net/search?q=
 - 네이버 지식인 http://kin.search.naver.com/search.naver?where=kin_qna&query=
 
역사
메모
관련된 항목들
수학용어번역
- 단어사전 http://www.google.com/dictionary?langpair=en%7Cko&q=
 - 발음사전 http://www.forvo.com/search/
 - 대한수학회 수학 학술 용어집
 - 남·북한수학용어비교
 - 대한수학회 수학용어한글화 게시판
 
사전 형태의 자료
- http://en.wikipedia.org/wiki/root_systems
 - http://en.wikipedia.org/wiki/Dynkin_diagram
 - http://en.wikipedia.org/wiki/Coxeter_number
 
- http://en.wikipedia.org/wiki/
 - http://www.wolframalpha.com/input/?i=
 - NIST Digital Library of Mathematical Functions
 - The On-Line Encyclopedia of Integer Sequences
 
관련논문
관련도서
- 도서내검색
 - 도서검색
 
관련기사
- 네이버 뉴스 검색 (키워드 수정)