"2-term 다이로그 항등식 (dilogarithm identities) 과 행렬"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
10번째 줄: 10번째 줄:
  
 
* [[다이로그 항등식 (dilogarithm identities)]]
 
* [[다이로그 항등식 (dilogarithm identities)]]
*  2x2 행렬<br><math>\left( \begin{array}{cc} a & b \\ b & c \end{array} \right)</math>에 대해서 다음과 같은 방정식을 생각<br><math>1-x_1=x_1^{a} x_2^{b},1-x_2=x_1^{b} x_2^{c}</math><br>
+
*  2x2 행렬<br><math>A=\left( \begin{array}{cc} a & b \\ b & c \end{array} \right)</math>에 대해서 다음과 같은 연립방정식을 생각<br><math>1-x_1=x_1^{a} x_2^{b},1-x_2=x_1^{b} x_2^{c},0<x_i<1</math><br>
*  
+
* 어떤 행렬에 대해서, [[로저스 다이로그 함수 (Rogers' dilogarithm)]] 가 적당한 유리수 <math>r_A</math>에 대하여 다음을 만족시키는지의 문제<br><math>L(x_1)+L(x_2)=r_{A}L(1)</math><br>
  
 
 
 
 
17번째 줄: 17번째 줄:
 
 
 
 
  
<h5 style="line-height: 2em; margin: 0px;">쌍대성</h5>
+
<h5>쌍대성</h5>
  
 
*  두 2x2 행렬 A , B 가 서로 역행렬일때,<br>
 
*  두 2x2 행렬 A , B 가 서로 역행렬일때,<br>

2012년 7월 24일 (화) 09:18 판

이 항목의 수학노트 원문주소

 

 

개요

 

 

쌍대성
  • 두 2x2 행렬 A , B 가 서로 역행렬일때,
  • \(L(x)+L(1-x)=2L(1)\)
    \(\log (1-x)=A\log x\)
    \(\log x=A^{-1}\log (1-x)\)

 

 

행렬의 예
  • complete list of the form
    \( \begin{bmatrix} a & b \\ b & a \end{bmatrix}\) only a+b = 2,1,1/2,0 allowed
    \( \begin{bmatrix} a & 2-a \\ 2-a & a \end{bmatrix}\)\( \begin{bmatrix} a & 1-a \\ 1-a & a \end{bmatrix}\)\( \begin{bmatrix} a & 1/2-a \\ 1/2-a & a \end{bmatrix}\)\( \begin{bmatrix} a & -a \\ -a & a \end{bmatrix}\)
  • complete list of the form
    \( \begin{bmatrix} 2a & 1 \\ 1 & 1 \end{bmatrix}\)
     \( \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}\)\( \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}\)\( \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}\)\( \begin{bmatrix} 4 & 1 \\ 1 & 1 \end{bmatrix}\)\( \begin{bmatrix} \infty & 1 \\ 1 & 1 \end{bmatrix}\)
  • M(3,5)
    \(\left[ \begin{array}{cc} 5/2 & 2 \\ 2 & 2 \end{array} \right]\)
  • M(3,4)
    \( \begin{bmatrix} 4 & 3 \\ 3 & 3 \end{bmatrix}\)\( \begin{bmatrix} 8 & 3 \\ 3 & 2 \end{bmatrix}\)
  • M(2,5)
    \( \begin{bmatrix} 8 & 5 \\ 5 & 4 \end{bmatrix}\)
  • M(6,7)
    \( \begin{bmatrix} 4/3 & 1/3 \\ 1/3 & 2/3 \end{bmatrix}\)
  • d=0 case (not positive definite)
    \( \begin{bmatrix} 1/2 & 1/2 \\ 1/2 & 0 \end{bmatrix}\)
    \( \begin{bmatrix} 8/9 & 1/3 \\ 1/3 & 0 \end{bmatrix}\)

 

역사

 

 

 

메모

 

 

 

관련된 항목들

 

 

수학용어번역

 

 

 

사전 형태의 자료

 

 

리뷰논문, 에세이, 강의노트

 

 

 

관련논문

 

 

관련도서