"(p,q)-셔플(shuffle)"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “==관련도서== * 도서내검색<br> ** http://books.google.com/books?q= ** http://book.daum.net/search/contentSearch.do?query=” 문자열을 “” 문자열로) |
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “==관련논문== * http://www.jstor.org/action/doBasicSearch?Query= * http://www.ams.org/mathscinet * http://dx.doi.org/” 문자열을 “” 문자열로) |
||
101번째 줄: | 101번째 줄: | ||
==리뷰논문, 에세이, 강의노트== | ==리뷰논문, 에세이, 강의노트== | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− |
2012년 11월 2일 (금) 08:40 판
개요
- 다음 조건을 만족시키는 치환 \( \tau\in S_{p+q}\) 을 (p,q)-셔플 이라 한다
\( \tau(1) < \cdots < \tau(p) \,\)
\( \tau(p+1) < \cdots < \tau(p+q) \,\) - (p,q)-shuffle들의 집합을 \(S(p,q)\)라 하면, \(S(p,q)\)의 크기는 \({p+q \choose p}\)이다
- 외대수(exterior algebra)와 겹선형대수(multilinear algebra) 에서 wedge product를 다루는데 활용된다
예 : (3,2)-셔플
- (3,2)-셔플의 원소는 다음 10개로 주어진다
- {{1,2,3},{4,5}}
- {{1,2,4},{3,5}}
- {{1,2,5},{3,4}}
- {{1,3,4},{2,5}}
- {{1,3,5},{2,4}}
- {{1,4,5},{2,3}}
- {{2,3,4},{1,5}}
- {{2,3,5},{1,4}}
- {{2,4,5},{1,3}}
- {{3,4,5},{1,2}}
역사
메모
- Math Overflow http://mathoverflow.net/search?q=
관련된 항목들
수학용어번역
- 단어사전
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- 한국통계학회 통계학 용어 온라인 대조표
- 한국물리학회 물리학 용어집 검색기
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
매스매티카 파일 및 계산 리소스
- https://docs.google.com/file/d/0B8XXo8Tve1cxdXhzTldWeEtsSmM/edit
- http://www.wolframalpha.com/input/?i=
- http://functions.wolfram.com/
- NIST Digital Library of Mathematical Functions
- Abramowitz and Stegun Handbook of mathematical functions
- The On-Line Encyclopedia of Integer Sequences
- Numbers, constants and computation
- 매스매티카 파일 목록
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/(p,q)_shuffle
- Encyclopaedia of Mathematics
- NIST Digital Library of Mathematical Functions
- The World of Mathematical Equations