"맥스웰 방정식"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
5번째 줄: | 5번째 줄: | ||
− | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;"> | + | |
+ | |||
+ | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요</h5> | ||
* 전기장에 대한 가우스의 법칙<br><math>\nabla \cdot \mathbf{E} = \frac {\rho} {\varepsilon_0}</math><br> | * 전기장에 대한 가우스의 법칙<br><math>\nabla \cdot \mathbf{E} = \frac {\rho} {\varepsilon_0}</math><br> |
2011년 4월 10일 (일) 08:23 판
이 항목의 스프링노트 원문주소
개요
- 전기장에 대한 가우스의 법칙
\(\nabla \cdot \mathbf{E} = \frac {\rho} {\varepsilon_0}\) - 자기장에 대한 가우스의 법칙
\(\nabla \cdot \mathbf{B} = 0\) - 패러데이의 법칙
\(\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}} {\partial t}\)
- 앙페르-패러데이 법칙
\(\nabla \times \mathbf{B} = \mu_0\mathbf{J} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}} {\partial t}\ \)
파동방정식의 유도
- 미분연산자 사이에는 다음과 같은 항등식이 성립 (다변수미적분학 항목 참조)
\(\nabla \times (\nabla \times \mathbf{E})=\nabla (\nabla \cdot \mathbf{E}) - \nabla^2 \mathbf{E}\)
\( \nabla^2 \mathbf{E}= \nabla (\nabla \cdot \mathbf{E}) - \nabla \times (\nabla \times \mathbf{E})\) - 전기장에 대한 가우스의 법칙과 패러데이의 법칙으로부터 다음을 얻는다
\(\nabla \cdot \mathbf{E} = \frac {\rho} {\varepsilon_0}\), \(\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}} {\partial t}\)
\( \nabla^2 \mathbf{E}= \nabla \frac {\rho} {\varepsilon_0} + \nabla \times \frac{\partial \mathbf{B}} {\partial t}=\nabla \frac {\rho} {\varepsilon_0} + \frac{\partial (\nabla \times \mathbf{B})} {\partial t}\) - 앙페르-패러데이 법칙으로부터 다음을 얻는다
\(\nabla \times \mathbf{B} = \mu_0\mathbf{J} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}} {\partial t}\ \)
\( \nabla^2 \mathbf{E}= \nabla \frac {\rho} {\varepsilon_0} + \frac{\partial (\mu_0\mathbf{J} +\mu_0 \varepsilon_0 \frac{\partial \mathbf{E}} {\partial t}\ )} {\partial t}=\nabla \frac {\rho} {\varepsilon_0} + \mu_0\frac{\partial \mathbf{J} }{\partial t} +\mu_0 \varepsilon_0 \frac{\partial^2 \mathbf{E}} {\partial t^2}\)
- \(\rho=0, \mathbf{J}=0 \)인 곳에서 전기장은 파동방정식을 만족시키게 된다
\( \nabla^2 \mathbf{E}= \mu_0 \varepsilon_0 \frac{\partial^2 \mathbf{E}} {\partial t^2}\)
재미있는 사실
역사
관련된 다른 주제들
수학용어번역
사전 형태의 자료
- http://ko.wikipedia.org/wiki/맥스웰_방정식
- http://en.wikipedia.org/wiki/
- http://www.wolframalpha.com/input/?i=
- NIST Digital Library of Mathematical Functions
관련논문
관련도서 및 추천도서
- 도서내검색
- 도서검색
관련기사
- 네이버 뉴스 검색 (키워드 수정)