"맴돌이군이 유한인 초기하 미분방정식에 대한 슈바르츠 목록"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
6번째 줄: 6번째 줄:
  
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요</h5>
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요</h5>
 +
 +
* [[초기하 미분방정식(Hypergeometric differential equations)]]<br><math>z(1-z)\frac{d^2w}{dz^2}+(c-(a+b+1)z)\frac{dw}{dz}-abw = 0</math><br>
 +
*  어떤 <math>a,b,c</math>에 대하여, 초기하 미분방정식의 맴돌이군(monodromy group)이 유한군이 되는가(또는 미분방정식의 해가 대수적인가)의 문제<br>
 +
*  슈워츠는 1873년 가능한 경우에 대한 답을 제시함<br>
  
 
 
 
 
 
* [[초기하 미분방정식(Hypergeometric differential equations)]]<br><math>z(1-z)\frac{d^2w}{dz^2}+(c-(a+b+1)z)\frac{dw}{dz}-abw = 0</math><br>
 
  
 
 
 
 
48번째 줄: 50번째 줄:
 
* [[5차방정식과 정이십면체|오차방정식과 정이십면체]]<br>
 
* [[5차방정식과 정이십면체|오차방정식과 정이십면체]]<br>
 
* [[유한반사군과 콕세터군(finite reflection groups and Coxeter groups)]]<br>
 
* [[유한반사군과 콕세터군(finite reflection groups and Coxeter groups)]]<br>
 +
* [[Fuchsian 미분방정식(Fuchsian differential equation)]]<br>
 +
* [[리만 미분방정식]]<br>
  
 
 
 
 
83번째 줄: 87번째 줄:
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련논문</h5>
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련논문</h5>
  
 +
* [http://resolver.sub.uni-goettingen.de/purl?GDZPPN002155206 Ueber diejenigen Fälle in welchen die Gaussichen hypergeometrische Reihe eine algebraische Function ihres vierten Elementes darstellt]<br>
 +
** Schwarz, H. A. (1873), Journal für die reine und angewandte Mathematik 75: 292–335
 
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://www.ams.org/mathscinet
 
* http://www.ams.org/mathscinet
93번째 줄: 99번째 줄:
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련도서</h5>
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련도서</h5>
  
 +
*   <br>
 
* [http://repository.kulib.kyoto-u.ac.jp/dspace/handle/2433/84920 Lectures on algebraic solutions of hypergeometric differential equations]<br>
 
* [http://repository.kulib.kyoto-u.ac.jp/dspace/handle/2433/84920 Lectures on algebraic solutions of hypergeometric differential equations]<br>
 
** Matsuda, Michihiko, 1985
 
** Matsuda, Michihiko, 1985
 +
 
*  도서내검색<br>
 
*  도서내검색<br>
 
** http://books.google.com/books?q=
 
** http://books.google.com/books?q=

2010년 8월 14일 (토) 18:23 판

이 항목의 스프링노트 원문주소

 

 

개요
  • 초기하 미분방정식(Hypergeometric differential equations)
    \(z(1-z)\frac{d^2w}{dz^2}+(c-(a+b+1)z)\frac{dw}{dz}-abw = 0\)
  • 어떤 \(a,b,c\)에 대하여, 초기하 미분방정식의 맴돌이군(monodromy group)이 유한군이 되는가(또는 미분방정식의 해가 대수적인가)의 문제
  • 슈워츠는 1873년 가능한 경우에 대한 답을 제시함

 

 

 

재미있는 사실

 

 

 

역사

 

 

 

메모
  •  

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문

 

 

관련도서

 

 

관련기사

 

 

블로그