"맴돌이군이 유한인 초기하 미분방정식에 대한 슈바르츠 목록"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로)
잔글 (찾아 바꾸기 – “<h5 (.*)">” 문자열을 “==” 문자열로)
1번째 줄: 1번째 줄:
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소==
+
==이 항목의 스프링노트 원문주소==
  
 
* [[맴돌이군이 유한인 초기하 미분방정식에 대한 슈바르츠 목록|맴돌이군이 유한인 초기하 미분방정식에 대한 슈워츠 목록]]<br>
 
* [[맴돌이군이 유한인 초기하 미분방정식에 대한 슈바르츠 목록|맴돌이군이 유한인 초기하 미분방정식에 대한 슈워츠 목록]]<br>
7번째 줄: 7번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요==
+
==개요==
  
 
* [[초기하 미분방정식(Hypergeometric differential equations)]]<br><math>z(1-z)\frac{d^2w}{dz^2}+(c-(a+b+1)z)\frac{dw}{dz}-abw = 0</math><br>
 
* [[초기하 미분방정식(Hypergeometric differential equations)]]<br><math>z(1-z)\frac{d^2w}{dz^2}+(c-(a+b+1)z)\frac{dw}{dz}-abw = 0</math><br>
17번째 줄: 17번째 줄:
 
 
 
 
  
<h5 style="line-height: 2em; margin: 0px;">a,b,c와 삼각형==
+
==a,b,c와 삼각형==
  
 
* 세 파라메터 a,b,c에 대한 초기하 미분방정식의 일차독립인 두 해의 비율로 얻어지는 함수
 
* 세 파라메터 a,b,c에 대한 초기하 미분방정식의 일차독립인 두 해의 비율로 얻어지는 함수
26번째 줄: 26번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">역사==
+
==역사==
  
 
 
 
 
38번째 줄: 38번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">메모==
+
==메모==
  
 
*   <br>
 
*   <br>
44번째 줄: 44번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련된 항목들==
+
==관련된 항목들==
  
 
* [[5차방정식과 정이십면체|오차방정식과 정이십면체]]<br>
 
* [[5차방정식과 정이십면체|오차방정식과 정이십면체]]<br>
55번째 줄: 55번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역==
+
==수학용어번역==
  
 
* 단어사전 http://www.google.com/dictionary?langpair=en|ko&q=
 
* 단어사전 http://www.google.com/dictionary?langpair=en|ko&q=
68번째 줄: 68번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">사전 형태의 자료==
+
==사전 형태의 자료==
  
 
* http://ko.wikipedia.org/wiki/
 
* http://ko.wikipedia.org/wiki/
83번째 줄: 83번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련논문==
+
==관련논문==
  
 
* [http://resolver.sub.uni-goettingen.de/purl?GDZPPN002155206 Ueber diejenigen Fälle in welchen die Gaussichen hypergeometrische Reihe eine algebraische Function ihres vierten Elementes darstellt]<br>
 
* [http://resolver.sub.uni-goettingen.de/purl?GDZPPN002155206 Ueber diejenigen Fälle in welchen die Gaussichen hypergeometrische Reihe eine algebraische Function ihres vierten Elementes darstellt]<br>
95번째 줄: 95번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련도서==
+
==관련도서==
  
 
*   <br>
 
*   <br>
113번째 줄: 113번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련기사==
+
==관련기사==
  
 
*  네이버 뉴스 검색 (키워드 수정)<br>
 
*  네이버 뉴스 검색 (키워드 수정)<br>
124번째 줄: 124번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">블로그==
+
==블로그==
  
 
*  구글 블로그 검색<br>
 
*  구글 블로그 검색<br>

2012년 11월 1일 (목) 14:27 판

이 항목의 스프링노트 원문주소

 

 

개요

  • 초기하 미분방정식(Hypergeometric differential equations)
    \(z(1-z)\frac{d^2w}{dz^2}+(c-(a+b+1)z)\frac{dw}{dz}-abw = 0\)
  • 어떤 \(a,b,c\)에 대하여, 초기하 미분방정식의 맴돌이군(monodromy group)이 유한군이 되는가(또는 미분방정식의 해가 대수적인가)의 문제
  • 슈워츠는 1873년 가능한 경우에 대한 답을 제시함

 

 

a,b,c와 삼각형

  • 세 파라메터 a,b,c에 대한 초기하 미분방정식의 일차독립인 두 해의 비율로 얻어지는 함수
  • \(\alpha=1-c,\beta=b-a,\gamma=c-a-b\) 로 두면, 상반평면을 \(\alpha\pi,\beta\pi,\gamma\pi\) 를 세 각으로 갖는 삼각형으로 보낸다

 

 

역사

 

 

 

메모

  •  

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문

 

 

관련도서

 

 

관련기사

 

 

블로그