"반데몬드 행렬과 행렬식"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지를 개설하였습니다.)
 
 
(사용자 2명의 중간 판 23개는 보이지 않습니다)
1번째 줄: 1번째 줄:
 +
==개요==
 +
* 다음과 같은 행렬을 반데몬드 행렬 (Vandermonde matrix)이라 한다 :<math>\begin{bmatrix} 1 & \alpha_1 & \alpha_1^2 & \dots & \alpha_1^{n-1}\\ 1 & \alpha_2 & \alpha_2^2 & \dots & \alpha_2^{n-1}\\ 1 & \alpha_3 & \alpha_3^2 & \dots & \alpha_3^{n-1}\\ \vdots & \vdots & \vdots & \ddots &\vdots \\ 1 & \alpha_m & \alpha_m^2 & \dots & \alpha_m^{n-1}\\\end{bmatrix}</math>
 +
* [[행렬식]]은 다음과 같이 주어진다 :<math>\prod_{1\le i<j\le n} (\alpha_j-\alpha_i)</math>
 +
*  행렬식은 [[교대다항식(alternating polynomial)]]이다
  
 +
==분할을 통한 일반화==
 +
* [[교대다항식(alternating polynomial)]]에서 가져옴
 +
* 자연수의 분할 <math>\lambda : \lambda_{1}\geq \cdots \geq \lambda_{n}\geq 0</math> 에 대하여 행렬 <math>\left(x_j^{\lambda _i+n-i}\right)_{1\le i,j\le n}</math> 의 행렬식은 교대다항식이다.
 +
* <math>\lambda : \lambda_{1}=\cdots = \lambda_{n}= 0</math>인 경우, 반데몬드 행렬이 된다
 +
* <math>n=3</math> 의 경우 :<math>\left(
 +
\begin{array}{ccc}
 +
x_1^{\lambda _1+2} & x_2^{\lambda _1+2} & x_3^{\lambda _1+2} \\
 +
x_1^{\lambda _2+1} & x_2^{\lambda _2+1} & x_3^{\lambda _2+1} \\
 +
x_1^{\lambda _3} & x_2^{\lambda _3} & x_3^{\lambda _3}
 +
\end{array}
 +
\right)</math>
 +
* <math>n=4</math>의 경우 :<math>\left(
 +
\begin{array}{cccc}
 +
x_1^{\lambda _1+3} & x_2^{\lambda _1+3} & x_3^{\lambda _1+3} & x_4^{\lambda _1+3} \\
 +
x_1^{\lambda _2+2} & x_2^{\lambda _2+2} & x_3^{\lambda _2+2} & x_4^{\lambda _2+2} \\
 +
x_1^{\lambda _3+1} & x_2^{\lambda _3+1} & x_3^{\lambda _3+1} & x_4^{\lambda _3+1} \\
 +
x_1^{\lambda _4} & x_2^{\lambda _4} & x_3^{\lambda _4} & x_4^{\lambda _4}
 +
\end{array}
 +
\right)</math>
 +
 +
 +
==역사==
 +
* [[수학사 연표]]
 +
 +
 +
 +
 +
 +
==메모==
 +
* http://mathoverflow.net/questions/43538/wonderful-applications-of-the-vandermonde-determinant?rq=1
 +
 +
 +
 +
 +
==관련된 항목들==
 +
 +
* [[대칭군 (symmetric group)]]
 +
* [[다항식의 판별식(discriminant)]]
 +
 +
 +
 +
 +
==수학용어번역==
 +
*{{forvo|url=vandermonde}}
 +
 +
 +
 +
 +
==매스매티카 파일 및 계산 리소스==
 +
 +
* https://docs.google.com/leaf?id=0B8XXo8Tve1cxMGI5NDYxMDYtZjFhMy00OWRhLWEyYzUtNWQ4ZjcxYTA0ODFj&sort=name&layout=list&num=50
 +
 +
 +
 +
 +
==사전 형태의 자료==
 +
 +
* http://ko.wikipedia.org/wiki/
 +
* http://en.wikipedia.org/wiki/Vandermonde_matrix
 +
 +
 +
==관련논문==
 +
* Yaacov, Itaï Ben. 2014. “A Multivariate Version of the Vandermonde Determinant Identity.” arXiv:1405.0993 [math], May. http://arxiv.org/abs/1405.0993.
 +
 +
[[분류:선형대수학]]
 +
[[분류:대칭다항식]]
 +
[[분류:행렬식]]
 +
 +
==메타데이터==
 +
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q579544 Q579544]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'vandermonde'}, {'LEMMA': 'matrix'}]
 +
* [{'LOWER': 'vandermonde'}, {'LOWER': "'s"}, {'LEMMA': 'matrix'}]

2021년 2월 17일 (수) 04:44 기준 최신판

개요

  • 다음과 같은 행렬을 반데몬드 행렬 (Vandermonde matrix)이라 한다 \[\begin{bmatrix} 1 & \alpha_1 & \alpha_1^2 & \dots & \alpha_1^{n-1}\\ 1 & \alpha_2 & \alpha_2^2 & \dots & \alpha_2^{n-1}\\ 1 & \alpha_3 & \alpha_3^2 & \dots & \alpha_3^{n-1}\\ \vdots & \vdots & \vdots & \ddots &\vdots \\ 1 & \alpha_m & \alpha_m^2 & \dots & \alpha_m^{n-1}\\\end{bmatrix}\]
  • 행렬식은 다음과 같이 주어진다 \[\prod_{1\le i<j\le n} (\alpha_j-\alpha_i)\]
  • 행렬식은 교대다항식(alternating polynomial)이다

분할을 통한 일반화

  • 교대다항식(alternating polynomial)에서 가져옴
  • 자연수의 분할 \(\lambda : \lambda_{1}\geq \cdots \geq \lambda_{n}\geq 0\) 에 대하여 행렬 \(\left(x_j^{\lambda _i+n-i}\right)_{1\le i,j\le n}\) 의 행렬식은 교대다항식이다.
  • \(\lambda : \lambda_{1}=\cdots = \lambda_{n}= 0\)인 경우, 반데몬드 행렬이 된다
  • \(n=3\) 의 경우 \[\left( \begin{array}{ccc} x_1^{\lambda _1+2} & x_2^{\lambda _1+2} & x_3^{\lambda _1+2} \\ x_1^{\lambda _2+1} & x_2^{\lambda _2+1} & x_3^{\lambda _2+1} \\ x_1^{\lambda _3} & x_2^{\lambda _3} & x_3^{\lambda _3} \end{array} \right)\]
  • \(n=4\)의 경우 \[\left( \begin{array}{cccc} x_1^{\lambda _1+3} & x_2^{\lambda _1+3} & x_3^{\lambda _1+3} & x_4^{\lambda _1+3} \\ x_1^{\lambda _2+2} & x_2^{\lambda _2+2} & x_3^{\lambda _2+2} & x_4^{\lambda _2+2} \\ x_1^{\lambda _3+1} & x_2^{\lambda _3+1} & x_3^{\lambda _3+1} & x_4^{\lambda _3+1} \\ x_1^{\lambda _4} & x_2^{\lambda _4} & x_3^{\lambda _4} & x_4^{\lambda _4} \end{array} \right)\]


역사



메모



관련된 항목들



수학용어번역



매스매티카 파일 및 계산 리소스



사전 형태의 자료


관련논문

  • Yaacov, Itaï Ben. 2014. “A Multivariate Version of the Vandermonde Determinant Identity.” arXiv:1405.0993 [math], May. http://arxiv.org/abs/1405.0993.

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'vandermonde'}, {'LEMMA': 'matrix'}]
  • [{'LOWER': 'vandermonde'}, {'LOWER': "'s"}, {'LEMMA': 'matrix'}]