"블라쉬케 곱 (Blaschke product)"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) (Pythagoras0 (토론) 의 20582판 편집을 되돌림) |
Pythagoras0 (토론 | 기여) |
||
(같은 사용자의 중간 판 9개는 보이지 않습니다) | |||
1번째 줄: | 1번째 줄: | ||
==개요== | ==개요== | ||
− | * 다음과 같은 꼴의 뫼비우스 변환들은 단위원을 단위원으로 보내는 전단사 해석함수이다 | + | * 다음과 같은 꼴의 뫼비우스 변환들은 단위원을 단위원으로 보내는 전단사 해석함수이다:<math>B(a,z)=\frac{|a|}{a}\frac{z-a}{1-\bar{a}z}</math> |
− | * Blaschke product는 이러한 꼴의 함수들의 유한 또는 무한곱으로 쓰여짐. | + | * Blaschke product는 이러한 꼴의 함수들의 유한 또는 무한곱으로 쓰여짐.:<math>B(z)=\prod_n B(a_n,z)</math> |
* 단위원에서 정의된 함수로 주어진 점에서 zero 를 갖는 해석함수를 만들기 위해 사용됨 | * 단위원에서 정의된 함수로 주어진 점에서 zero 를 갖는 해석함수를 만들기 위해 사용됨 | ||
13번째 줄: | 13번째 줄: | ||
==타원과 3차 블라쉬케 곱== | ==타원과 3차 블라쉬케 곱== | ||
− | * 다음과 같은 3차의 블라쉬케 곱을 생각하자 | + | * 다음과 같은 3차의 블라쉬케 곱을 생각하자:<math>B(z)=z\frac{z-a}{1-\bar{a}z}\frac{z-b}{1-\bar{b}z}</math> |
− | * 단위원 위의 점 <math>\lambda</math> 에 대하여, <math>B(z)=\lambda</math> 의 세 해를 <math>z_ 1,z_ 2,z_ 3</math> 로 두면, 세 직선 <math>\overline{z_ 1z_ 2},\overline{z_ 2 z_ 3},\overline{z_ 1 z_ 3}</math> 은 다음 타원에 접한다 | + | * 단위원 위의 점 <math>\lambda</math> 에 대하여, <math>B(z)=\lambda</math> 의 세 해를 <math>z_ 1,z_ 2,z_ 3</math> 로 두면, 세 직선 <math>\overline{z_ 1z_ 2},\overline{z_ 2 z_ 3},\overline{z_ 1 z_ 3}</math> 은 다음 타원에 접한다:<math>|w-a|+|w-b|=|1-\bar{a}b|</math> |
− | * <math>a=0.5,b=-0.4+0.4 i</math> 로 두고, 다양한 <math>\lambda</math> 에 대하여 위의 결과를 적용하여 얻은 그림 | + | * <math>a=0.5,b=-0.4+0.4 i</math> 로 두고, 다양한 <math>\lambda</math> 에 대하여 위의 결과를 적용하여 얻은 그림 |
[[파일:블라쉬케 곱(Blaschke product)1.gif]] | [[파일:블라쉬케 곱(Blaschke product)1.gif]] | ||
* '''[DPR2002]''' 참조 | * '''[DPR2002]''' 참조 | ||
30번째 줄: | 30번째 줄: | ||
* http://www.google.com/search?hl=en&tbs=tl:1&q= | * http://www.google.com/search?hl=en&tbs=tl:1&q= | ||
− | * [[ | + | * [[수학사 연표]] |
57번째 줄: | 57번째 줄: | ||
==수학용어번역== | ==수학용어번역== | ||
− | * 단어사전 | + | * 단어사전 |
** http://translate.google.com/#en|ko| | ** http://translate.google.com/#en|ko| | ||
** http://ko.wiktionary.org/wiki/ | ** http://ko.wiktionary.org/wiki/ | ||
85번째 줄: | 85번째 줄: | ||
==리뷰논문, 에세이, 강의노트== | ==리뷰논문, 에세이, 강의노트== | ||
+ | * Garcia, Stephan Ramon, Javad Mashreghi, and William T. Ross. “Finite Blaschke Products: A Survey.” arXiv:1512.05444 [math], December 16, 2015. http://arxiv.org/abs/1512.05444. | ||
− | + | ==관련논문== | |
+ | * Fletcher, Alastair. “Blaschke Products and Domains of Ellipticity.” arXiv:1408.2418 [math], August 11, 2014. http://arxiv.org/abs/1408.2418. | ||
+ | * '''[DPR2002]'''Daepp, Ulrich, Pamela Gorkin, and Raymond Mortini. 2002. Ellipses and Finite Blaschke Products. <em>The American Mathematical Monthly</em> 109 (9) (November 1): 785-795. doi:[http://dx.doi.org/10.2307/3072367 10.2307/3072367]. | ||
+ | |||
+ | |||
+ | == 노트 == | ||
− | + | ===위키데이터=== | |
+ | * ID : [https://www.wikidata.org/wiki/Q4380191 Q4380191] | ||
+ | ===말뭉치=== | ||
+ | # Thus, Blaschke's theorem describes the sequences of zeros of all possible Blaschke products.<ref name="ref_9e2883be">[https://encyclopediaofmath.org/wiki/Blaschke_product Encyclopedia of Mathematics]</ref> | ||
+ | # P.M. Tamrazov, "Conformal-metric theory of doubly connected domains and the generalized Blaschke product" Soviet Math.<ref name="ref_9e2883be" /> | ||
+ | # We present four algorithms to determine whether or not a Blaschke product is a composition of two non-trivial Blaschke products and, if it is, the algorithms suggest what the composition must be.<ref name="ref_41869d8e">[https://www.sciencedirect.com/science/article/pii/S0022247X1500058X Decomposing finite Blaschke products]</ref> | ||
+ | # The final algorithm looks at inverse images under the Blaschke product.<ref name="ref_41869d8e" /> | ||
+ | # Blaschke products were introduced by Wilhelm Blaschke (1915).<ref name="ref_17324500">[https://en.wikipedia.org/wiki/Blaschke_product Blaschke product]</ref> | ||
+ | # This monograph offers an introduction to finite Blaschke products and their connections to complex analysis, linear algebra, operator theory, matrix analysis, and other fields.<ref name="ref_4043241e">[https://www.springer.com/gp/book/9783319782461 Finite Blaschke Products and Their Connections]</ref> | ||
+ | # Deep connections to hyperbolic geometry are explored, as are the mapping properties, zeros, residues, and critical points of finite Blaschke products.<ref name="ref_4043241e" /> | ||
+ | # This book gathers the principal results about Blaschke products heretofore scattered in research papers over the past 70 years and provides an extensive bibliography of over 300 items.<ref name="ref_c68c4e61">[https://www.press.umich.edu/9690151/blaschke_products Blaschke Products]</ref> | ||
+ | # It is hoped that research workers in and students of function theory will find the book a useful guide and reference to the subject of Blaschke products.<ref name="ref_c68c4e61" /> | ||
+ | # All examples of Blaschke products constructed so far to prove this result have their zeros located on a ray.<ref name="ref_8bd64d4e">[https://projecteuclid.org/euclid.ijm/1258136177 Girela , Peláez : On the derivative of infinite Blaschke products]</ref> | ||
+ | # A Blaschke product always belongs to the set I of inner functions; it has norm 1 and radial limits of modulus 1 almost everywhere.<ref name="ref_dd2495ff">[https://www.cambridge.org/core/journals/canadian-journal-of-mathematics/article/some-lemmas-on-interpolating-blaschke-products-and-a-correction/B6435C2F5CC73570416AB722733D092D Some Lemmas on Interpolating Blaschke Products and a Correction]</ref> | ||
+ | ===소스=== | ||
+ | <references /> | ||
− | |||
− | |||
− | + | [[분류:복소함수론]] | |
− | * | + | ==메타데이터== |
− | * | + | ===위키데이터=== |
− | + | * ID : [https://www.wikidata.org/wiki/Q4380191 Q4380191] | |
+ | ===Spacy 패턴 목록=== | ||
+ | * [{'LOWER': 'blaschke'}, {'LEMMA': 'product'}] |
2021년 2월 17일 (수) 04:46 기준 최신판
개요
- 다음과 같은 꼴의 뫼비우스 변환들은 단위원을 단위원으로 보내는 전단사 해석함수이다\[B(a,z)=\frac{|a|}{a}\frac{z-a}{1-\bar{a}z}\]
- Blaschke product는 이러한 꼴의 함수들의 유한 또는 무한곱으로 쓰여짐.\[B(z)=\prod_n B(a_n,z)\]
- 단위원에서 정의된 함수로 주어진 점에서 zero 를 갖는 해석함수를 만들기 위해 사용됨
타원과 3차 블라쉬케 곱
- 다음과 같은 3차의 블라쉬케 곱을 생각하자\[B(z)=z\frac{z-a}{1-\bar{a}z}\frac{z-b}{1-\bar{b}z}\]
- 단위원 위의 점 \(\lambda\) 에 대하여, \(B(z)=\lambda\) 의 세 해를 \(z_ 1,z_ 2,z_ 3\) 로 두면, 세 직선 \(\overline{z_ 1z_ 2},\overline{z_ 2 z_ 3},\overline{z_ 1 z_ 3}\) 은 다음 타원에 접한다\[|w-a|+|w-b|=|1-\bar{a}b|\]
- \(a=0.5,b=-0.4+0.4 i\) 로 두고, 다양한 \(\lambda\) 에 대하여 위의 결과를 적용하여 얻은 그림
- [DPR2002] 참조
역사
메모
- [1]http://www.jstor.org/stable/10.2307/3072367
- http://math.stackexchange.com/questions/104806/question-regarding-infinite-blaschke-product
- Math Overflow http://mathoverflow.net/search?q=
관련된 항목들
매스매티카 파일 및 계산 리소스
수학용어번역
- 단어사전
- 발음사전 http://www.forvo.com/search/
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/Blaschke_product
- Encyclopaedia of Mathematics
- NIST Digital Library of Mathematical Functions
- The World of Mathematical Equations
리뷰논문, 에세이, 강의노트
- Garcia, Stephan Ramon, Javad Mashreghi, and William T. Ross. “Finite Blaschke Products: A Survey.” arXiv:1512.05444 [math], December 16, 2015. http://arxiv.org/abs/1512.05444.
관련논문
- Fletcher, Alastair. “Blaschke Products and Domains of Ellipticity.” arXiv:1408.2418 [math], August 11, 2014. http://arxiv.org/abs/1408.2418.
- [DPR2002]Daepp, Ulrich, Pamela Gorkin, and Raymond Mortini. 2002. Ellipses and Finite Blaschke Products. The American Mathematical Monthly 109 (9) (November 1): 785-795. doi:10.2307/3072367.
노트
위키데이터
- ID : Q4380191
말뭉치
- Thus, Blaschke's theorem describes the sequences of zeros of all possible Blaschke products.[1]
- P.M. Tamrazov, "Conformal-metric theory of doubly connected domains and the generalized Blaschke product" Soviet Math.[1]
- We present four algorithms to determine whether or not a Blaschke product is a composition of two non-trivial Blaschke products and, if it is, the algorithms suggest what the composition must be.[2]
- The final algorithm looks at inverse images under the Blaschke product.[2]
- Blaschke products were introduced by Wilhelm Blaschke (1915).[3]
- This monograph offers an introduction to finite Blaschke products and their connections to complex analysis, linear algebra, operator theory, matrix analysis, and other fields.[4]
- Deep connections to hyperbolic geometry are explored, as are the mapping properties, zeros, residues, and critical points of finite Blaschke products.[4]
- This book gathers the principal results about Blaschke products heretofore scattered in research papers over the past 70 years and provides an extensive bibliography of over 300 items.[5]
- It is hoped that research workers in and students of function theory will find the book a useful guide and reference to the subject of Blaschke products.[5]
- All examples of Blaschke products constructed so far to prove this result have their zeros located on a ray.[6]
- A Blaschke product always belongs to the set I of inner functions; it has norm 1 and radial limits of modulus 1 almost everywhere.[7]
소스
- ↑ 1.0 1.1 Encyclopedia of Mathematics
- ↑ 2.0 2.1 Decomposing finite Blaschke products
- ↑ Blaschke product
- ↑ 4.0 4.1 Finite Blaschke Products and Their Connections
- ↑ 5.0 5.1 Blaschke Products
- ↑ Girela , Peláez : On the derivative of infinite Blaschke products
- ↑ Some Lemmas on Interpolating Blaschke Products and a Correction
메타데이터
위키데이터
- ID : Q4380191
Spacy 패턴 목록
- [{'LOWER': 'blaschke'}, {'LEMMA': 'product'}]